介绍

原子数: 94
组: 没有
原子量: 239
期: 7
CAS号码: 7440-07-5

分类

金属
非金属
非金属
碱金属
碱土金属
过渡金属
硫族
卤素
惰性气体
镧系元素

稀土元素
铂族金属
超铀
没有稳定的同位素
固体
液体
加油站
固体 (预料到的)

描述 • 用途/功能

Plutonium was the second transuranium element of the actinide series to be discovered. The isotope plutonium-238 was produced in 1940 by Seaborg, McMillan, Kennedy, and Wahl by deuteron bombardment of uranium in the 60-inch cyclotron at Berkeley, California. Plutonium also exists in trace quantities in naturally occurring uranium ores. It is formed in much the same manner as neptunium, by irradiation of natural uranium with the neutrons which are present. By far of greatest importance is the isotope plutonium-239, with a half-life of 24,100 years, produced in extensive quantities in nuclear reactors from natural uranium. First, uranium-238 picks up a neutron to give uranium-239, which then undergoes two successive beta decays, to produce neptunium-239 and finally plutonium-239.. Eighteen isotopes of plutonium are now known. Plutonium has assumed the position of dominant importance among the transuranium elements because of its successful use as an explosive ingredient in nuclear weapons and the place which it holds as a key material in the development of industrial use of nuclear power. One kilogram is equivalent to about 22 million kilowatt hours of heat energy. The complete detonation of a kilogram of plutonium produces an explosion equal to about 20,000 tons of chemical explosive. Its importance depends on the nuclear property of being readily fissionable with neutrons and its availability in quantity. The world’s nuclear-power reactors are now producing about 20,000 kg of plutonium/yr. By 1982 it was estimated that about 300,000 kg had accumulated. The various nuclear applications of plutonium are well known. Plutonium-238 has been used in the Apollo lunar missions to power seismic and other equipment on the lunar surface. As with neptunium and uranium, plutonium metal can be prepared by reduction of the trifluoride with alkaline-earth metals. The metal has a silvery appearance and takes on a yellow tarnish when slightly oxidized. It is chemically reactive. A relatively large piece of plutonium is warm to the touch because of the energy given off in alpha decay. Larger pieces will produce enough heat to boil water. The metal readily dissolves in concentrated hydrochloric acid, hydroiodic acid, or perchloric acid with formation of the Pu+3 ion. The metal exhibits six allotropic modifications having various crystalline structures. The densities of these vary from 16.00 to 19.86 g/cm3. Plutonium also exhibits four ionic valence states in aqueous solutions: Pu+3(blue lavender), Pu+4 (yellow brown), PuO+ (pink?), and PuO+2 (pink orange). The ion PuO+ is unstable in aqueous solutions, disproportionating into Pu+4 and PuO+2. The Pu+4 thus formed, however, oxidizes the PuO+ into PuO+2, itself being reduced to Pu+3, giving finally Pu+3 and PuO+2. Plutonium forms binary compounds with oxygen: PuO, PuO2, and intermediate oxides of variable composition; with the halides: Puf3, Puf4, PuCl3, PuBr3, PuI3; with carbon, nitrogen, and silicon: PuC, PuN, PuSi2. Oxyhalides are also well known: PuOCl, PuOBr, PuOI. Because of the high rate of emission of alpha particles and the element being specifically absorbed by bone marrow, plutonium, as well as all of the other transuranium elements except neptunium, are radiological poisons and must be handled with very special equipment and precautions. Plutonium is a very dangerous radiological hazard. Precautions must also be taken to prevent the unintentional formation of a critical mass. Plutonium in liquid solution is more likely to become critical than solid plutonium. The shape of the mass must also be considered where criticality is concerned. Plutonium-238 is available to authorized users from the O.R.N.L. at a cost of about $7.50/mg (97%) plus packing costs of $1250 per package. 1

物理性能

熔点:2*  640 °C = 913.15 K = 1184 °F
沸点:2* 3228 °C = 3501.15 K = 5842.4 °F
升华点:2 
三相点:2 
临界点:2 
密度:3  19.7 g/cm3

* - at 1 atm

电子组态

电子组态:  *[Rn] 7s2 5f6
块: f
最高占据能级: 7
价电子: 2

量子数:

n = 5
ℓ = 3
m = 2
ms = +½

粘接

电负性 (鲍林规模):4 1.3
Electropositivity (鲍林规模): 2.7

电离能   eV 5  kJ/mol  
电离能   eV 5  kJ/mol  
电离能   eV 5  kJ/mol  
1 6.0262    581.4

热化学

比热: 
导热系数: 6.74 (W/m)/K, 27°C 6
融合热: 2.84 kJ/mol 7 = 11.9 J/g
汽化热: 344 kJ/mol 8 = 1439.3 J/g
物质状态 生成焓 (ΔHf°)9 熵 (S°)9 吉布斯自由能 (ΔGf°)9
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 12.3 51.4632 0 0

同位素

核素  10 半衰期 10 核自旋 10 结合能
228Pu 228.03874(3) 1.1(+20-5) s 0+ 1,738.77 MeV
229Pu 229.04015(6) 120(50) s 3/2+# 1,737.53 MeV
230Pu 230.039650(16) 1.70(17) min 0+ 1,754.91 MeV
231Pu 231.041101(28) 8.6(5) min 3/2+# 1,753.67 MeV
232Pu 232.041187(19) 33.7(5) min 0+ 1,761.74 MeV
233Pu 233.04300(5) 20.9(4) min 5/2+# 1,769.81 MeV
234Pu 234.043317(7) 8.8(1) h 0+ 1,777.89 MeV
235Pu 235.045286(22) 25.3(5) min (5/2+) 1,785.96 MeV
236Pu 236.0460580(24) 2.858(8) a 0+ 1,794.03 MeV
237Pu 237.0484097(24) 45.2(1) d 7/2- 1,802.10 MeV
238Pu 238.0495599(20) 87.7(1) a 0+ 1,810.17 MeV
239Pu 239.0521634(20) 24.11(3)E+3 a 1/2+ 1,808.93 MeV
240Pu 240.0538135(20) 6561(7) a 0+ 1,817.00 MeV
241Pu 241.0568515(20) 14.290(6) a 5/2+ 1,825.07 MeV
242Pu 242.0587426(20) 3.75(2)E+5 a 0+ 1,833.14 MeV
243Pu 243.062003(3) 4.956(3) h 7/2+ 1,831.90 MeV
244Pu 244.064204(5) 8.00(9)E+7 a 0+ 1,839.97 MeV
245Pu 245.067747(15) 10.5(1) h (9/2-) 1,848.04 MeV
246Pu 246.070205(16) 10.84(2) d 0+ 1,846.80 MeV
247Pu 247.07407(32)# 2.27(23) d 1/2+# 1,854.87 MeV
值标记#不是纯粹从实验数据得出,但至少部分来自系统的发展趋势。旋转弱任务参数都包含在括号中。 10

丰富

化合物

安全信息


材料安全数据表 - ACI Alloys, Inc.

了解更多信息

外部链接:

杂志:
(1) Biello, David. Trashing the "Element from Hell". Scientific American, July 2012, pp 19.

来源

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:23.
(2) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(4) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(9) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(10) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).