## 2 Sb (s) + 3 Cl2 (g) → 2 SbCl3 (s)

Back to reactions list

## Stoichiometry

Enter a mass or volume in one of the boxes below. Upon hitting submit, the stoichiometric equivalents will be calculated for the remaining reactants and products. All gases are assumed to be at STP.

 Sb             Mass: g Cl2            Mass: g or Gas Volume: L SbCl3          Mass: g Heat Released: kJ

## Enthalpy of Reaction

[2ΔHf(SbCl3 (s))] - [2ΔHf(Sb (s)) + 3ΔHf(Cl2 (g))]
[2(-382.17)] - [2(0) + 3(0)] = -764.34 kJ
-764.34 kJ     (exothermic)

## Entropy Change

[2ΔSf(SbCl3 (s))] - [2ΔSf(Sb (s)) + 3ΔSf(Cl2 (g))]
[2(184.1)] - [2(45.69) + 3(222.97)] = -392.09 J/K
-392.09 J/K     (decrease in entropy)

## Free Energy of Reaction (at 298.15 K)

From ΔGf° values:
[2ΔGf(SbCl3 (s))] - [2ΔGf(Sb (s)) + 3ΔGf(Cl2 (g))]
[2(-323.72)] - [2(0) + 3(0)] = -647.44 kJ
-647.44 kJ     (spontaneous)

From ΔG = ΔH - TΔS:
-647.44 kJ     (spontaneous)

## Equilibrium Constant, K (at 298.15 K)

2.7095180132e+113
This process is favorable at 25°C.

## Reference(s):

Halka, Monica and Nordstrom, Brian. Metals & Metalloids; Infobase Publishing: New York, NY, 2011; pg. 98.