VANÁDIO

Introdução

Número atômico: 23
Grupo: 5 or V B
Peso atômico: 50.9415
Período: 4
Número CAS: 7440-62-2

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

Vanadium was first discovered by del Rio in 1801. Unfortunately, a French chemist incorrectly declared del Rio’s new element was onlyimpure chromium; del Rio thought himself to be mistaken and accepted the French chemist’s statement. The element was rediscovered in 1830 bySefstrom, who named the element in honor of the Scandinavian goddess Vanadis because of its beautiful multicolored compounds. It was isolated innearly pure form by Roscoe, in 1867, who reduced the chloride with hydrogen. Vanadium of 99.3 to 99.8% purity was not produced until 1927.Vanadium is found in about 65 different minerals among which are carnotite, roscoelite, vanadinite, and patronite important sources of the metal.Vanadium is also found in phosphate rock and certain iron ores, and is present in some crude oils in the form of organic complexes. It is also foundin small percentages in meteorites. Commercial production from petroleum ash holds promise as an important source of the element. High-purityductile vanadium can be obtained by reduction of vanadium trichloride with magnesium or with magnesium-sodium mixtures. Much of the vanadiummetal being produced is now made by calcium reduction of V2O5 in a pressure vessel, an adaption of a process developed by McKechnie and Seybolt.Natural vanadium is a mixture of two isotopes, 50V (0.25%) and 51V (99.75%). 50V is slightly radioactive, having a long half-life. Seventeen otherunstable isotopes are recognized. Pure vanadium is a bright white metal, and is soft and ductile. It has good corrosion resistance to alkalis, sulfuricand hydrochloric acid, and salt water, but the metal oxidizes readily above 660°C. The metal has good structural strength and a low fission neutroncross section, making it useful in nuclear applications. Vanadium is used in producing rust resistant, spring, and highspeed tool steels. It is an importantcarbide stabilizer in making steels. About 80% of the vanadium now produced is used as ferrovanadium or as a steel additive. Vanadium foil is usedas a bonding agent in cladding titanium to steel. Vanadium pentoxide is used in ceramics and as a catalyst. It is also used in producing a superconductivemagnet with a field of 175,000 gauss. Vanadium and its compounds are toxic and should be handled with care. Ductile vanadium is commerciallyavailable. Commercial vanadium metal, of about 95% purity, costs about $50kg. Vanadium metal (99.7%) costs about $1.50/g or $700/kg. 1

• "Vanadium gives steel the ability to resist breakage under heavy shocks, and permits steel springs to be bent countless times without losing their elasticity." 2
• "A number of transition metals (Ti, Zr, Hf, V, Nb, Ta, Mo, W) form interstitial carbides of composition MC and, in some cases, M2C. These carbides have extremely high melting points; they are very hard, and they are good electrical conductors." 3

Propriedades físicas

Ponto de fusão:4*  1910 °C = 2183.15 K = 3470 °F
Ponto de ebulição:4* 3407 °C = 3680.15 K = 6164.6 °F
Ponto de sublimação:4 
Ponto Triplo:4 
Ponto crítico:4 
Densidade:5  6.0 g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron: [Ar] 4s2 3d3
Quadra: d
Mais alto nível de energia Ocupado: 4
Elétrons de valência: 

Números quânticos:

n = 3
ℓ = 2
m = 0
ms = +½

Colagem

Eletronegatividade (escala Pauling):6 1.63
Electropositivity (escala Pauling): 2.37
Electron Affinity:7 0.525 eV
oxidação Unidos: +5,2,3,4
Função no trabalho:8 4.44 eV = 7.11288E-19 J

potencial de ionização   eV 9  kJ/mol  
1 6.7462    650.9
2 14.66    1414.5
3 29.311    2828.1
4 46.709    4506.7
5 65.2817    6298.7
6 128.13    12362.7
7 150.6    14530.7
potencial de ionização   eV 9  kJ/mol  
8 173.4    16730.6
9 205.8    19856.7
10 230.5    22239.9
11 255.7    24671.3
12 308.1    29727.1
13 336.277    32445.8
14 896    86450.8
15 976    94169.7
potencial de ionização   eV 9  kJ/mol  
16 1060    102274.4
17 1168    112694.8
18 1260    121571.5
19 1355    130737.6
20 1486    143377.2
21 1569.6    151443.3
22 6851.3    661049.8
23 7246.12    699144.1

Termoquímica

Calor específico: 0.489 J/g°C 10 = 24.910 J/mol°C = 0.117 cal/g°C = 5.954 cal/mol°C
Condutividade térmica: 30.7 (W/m)/K, 27°C 11
Calor de fusão: 20.9 kJ/mol 12 = 410.3 J/g
Calor da vaporização: 0.452 kJ/mol 13 = 8.9 J/g
Estado da matéria Entalpia de formação (ΔHf°)14 entropia (S°)14 Gibbs Energia Livre (ΔGf°)14
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 6.91 28.91144 0 0
(g) 122.90 514.2136 43.544 182.188096 108.32 453.21088

isótopos

nuclide Massa 15 Meia vida 15 spin nuclear 15 Energia de ligação
40V 40.01109(54)# 2-# 294.61 MeV
41V 40.99978(22)# 7/2-# 313.86 MeV
42V 41.99123(21)# <55 ns 2-# 329.38 MeV
43V 42.98065(25)# 80# ms 7/2-# 347.70 MeV
44V 43.97411(13) 111(7) ms (2+) 361.36 MeV
45V 44.965776(18) 547(6) ms 7/2- 377.82 MeV
46V 45.9602005(11) 422.50(11) ms 0+ 390.55 MeV
47V 46.9549089(9) 32.6(3) min 3/2- 404.21 MeV
48V 47.9522537(27) 15.9735(25) d 4+ 414.14 MeV
49V 48.9485161(12) 329(3) d 7/2- 425.94 MeV
50V 49.9471585(11) 1.4(4)E17 a 6+ 434.94 MeV
51V 50.9439595(11) ESTÁVEL 7/2- 446.74 MeV
52V 51.9447755(11) 3.743(5) min 3+ 453.88 MeV
53V 52.944338(3) 1.60(4) min 7/2- 461.95 MeV
54V 53.946440(16) 49.8(5) s 3+ 468.16 MeV
55V 54.94723(11) 6.54(15) s (7/2-)# 475.30 MeV
56V 55.95053(22) 216(4) ms (1+) 480.57 MeV
57V 56.95256(25) 0.35(1) s (3/2-) 486.78 MeV
58V 57.95683(27) 191(8) ms 3+# 491.13 MeV
59V 58.96021(33) 75(7) ms 7/2-# 495.47 MeV
60V 59.96503(51) 122(18) ms 3+# 498.89 MeV
61V 60.96848(43)# 47.0(12) ms 7/2-# 504.16 MeV
62V 61.97378(54)# 33.5(20) ms 3+# 507.58 MeV
63V 62.97755(64)# 17(3) ms (7/2-)# 511.92 MeV
64V 63.98347(75)# 10# ms [>300 ns] 514.41 MeV
65V 64.98792(86)# 10# ms 5/2-# 518.75 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 15

Abundância

Terra - Os compostos de origem: oxides 16
Terra - A água do mar: 0.0025 mg/L 17
Terra -  crosta:  120 mg/kg = 0.012% 17
Terra -  litosfera:  0.014% 18
Terra -  Total:  82 ppm 19
Planeta Mercúrio) -  Total:  63 ppm 19
Vênus -  Total:  86 ppm 19
condritos - Total: 200 (relative to 106 atoms of Si) 20

compostos

Informação de Segurança


Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:34.
(2) - Brownlee, Raymond B., Fuller, Robert W., and Whitsit, Jesse E. Elements of Chemistry; Allyn and Bacon: Boston, Massachusetts, 1959; p 560.
(3) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 119.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(6) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(8) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(13) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(14) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(15) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(16) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(17) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(18) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 964.
(19) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(20) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.