TÁLIO

Introdução

Número atômico: 81
Grupo: 13 or III A
Peso atômico: 204.3833
Período: 6
Número CAS: 7440-28-0

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

Thallium was discovered spectroscopically in 1861 by Crookes. The element was named after the beautiful green spectral line, which identifiedthe element. The metal was isolated both by Crookes and Lamy in 1862 about the same time. Thallium occurs in crooksite, lorandite, and hutchinsonite.It is also present in pyrites and is recovered from the roasting of this ore in connection with the production of sulfuric acid. It is also obtained fromthe smelting of lead and zinc ores. Extraction is somewhat complex and depends on the source of the thallium. Manganese nodules, found on the oceanfloor, contain thallium. When freshly exposed to air, thallium exhibits a metallic luster, but soon develops a bluish-gray tinge, resembling lead inappearance. A heavy oxide builds up on thallium if left in air, and in the presence of water the hydroxide is formed. The metal is very soft and malleable.It can be cut with a knife. forty seven isotopic forms of thallium, with atomic masses ranging from 179 to 210 are recognized. Natural thallium is amixture of two isotopes. The element and its compounds are toxic and should be handled carefully. Contact of the metal with skin is dangerous, andwhen melting the metal adequate ventilation should be provided. Thallium is suspected of carcinogenic potential for man. Thallium sulfate has beenwidely employed as a rodenticide and ant killer. It is odorless and tasteless, giving no warning of its presence. Its use, however, has been prohibitedin the U.S. since 1975 as a household insecticide and rodenticide. The electrical conductivity of thallium sulfide changes with exposure to infraredlight, and this compound is used in photocells. Thallium bromide-iodide crystals have been used as infrared optical materials. Thallium has been used,with sulfur or selenium and arsenic, to produce low melting glasses which become fluid between 125 and 150°C. These glasses have properties at roomtemperatures similar to ordinary glasses and are said to be durable and insoluble in water. Thallium oxide has been used to produce glasses with a highindex of refraction. Thallium has been used in treating ringworm and other skin infections; however, its use has been limited because of the narrowmargin between toxicity and therapeutic benefits. A mercury-thallium alloy, which forms a eutectic at 8.5% thallium, is reported to freeze at –60°C,some 20° below the freezing point of mercury. Thallium metal (99.999%) costs about $1/g. 1

• "has no practical uses as a free metal." 2

Propriedades físicas

Ponto de fusão:3*  304 °C = 577.15 K = 579.2 °F
Ponto de ebulição:3* 1473 °C = 1746.15 K = 2683.4 °F
Ponto de sublimação:3 
Ponto Triplo:3 
Ponto crítico:3 
Densidade:4  11.8 g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron: [Xe] 6s2 4f14 5d10 6p1
Quadra: p
Mais alto nível de energia Ocupado: 6
Elétrons de valência: 3

Números quânticos:

n = 6
ℓ = 1
m = -1
ms = +½

Colagem

Eletronegatividade (escala Pauling):5 1.8
Electropositivity (escala Pauling): 2.2
Electron Affinity:6 0.2 eV
oxidação Unidos: +1,3
Função no trabalho:7 4.02 eV = 6.44004E-19 J

potencial de ionização   eV 8  kJ/mol  
1 6.1082    589.4
potencial de ionização   eV 8  kJ/mol  
2 20.428    1971.0
potencial de ionização   eV 8  kJ/mol  
3 29.83    2878.2

Termoquímica

Calor específico: 0.129 J/g°C 9 = 26.365 J/mol°C = 0.031 cal/g°C = 6.301 cal/mol°C
Condutividade térmica: 46.1 (W/m)/K, 27°C 10
Calor de fusão: 4.142 kJ/mol 11 = 20.3 J/g
Calor da vaporização: 164.1 kJ/mol 12 = 802.9 J/g
Estado da matéria Entalpia de formação (ΔHf°)13 entropia (S°)13 Gibbs Energia Livre (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 15.34 64.18256 0 0
(g) 43.55 182.2132 43.225 180.8534 35.24 147.44416

isótopos

nuclide Massa 14 Meia vida 14 spin nuclear 14 Energia de ligação
176Tl 176.00059(21)# 5.2(+30-14) ms (3-,4-,5-) 1,357.18 MeV
177Tl 176.996427(27) 18(5) ms (1/2+) 1,374.57 MeV
178Tl 177.99490(12)# 255(10) ms 1,382.64 MeV
179Tl 178.99109(5) 270(30) ms (1/2+) 1,390.71 MeV
180Tl 179.98991(13)# 1.5(2) s 1,408.09 MeV
181Tl 180.986257(10) 3.2(3) s 1/2+# 1,416.17 MeV
182Tl 181.98567(8) 2.0(3) s 2-# 1,424.24 MeV
183Tl 182.982193(10) 6.9(7) s 1/2+# 1,432.31 MeV
184Tl 183.98187(5) 9.7(6) s 2-# 1,440.38 MeV
185Tl 184.97879(6) 19.5(5) s 1/2+# 1,457.77 MeV
186Tl 185.97833(20) 40# s (2-) 1,465.84 MeV
187Tl 186.975906(9) ~51 s (1/2+) 1,473.91 MeV
188Tl 187.97601(4) 71(2) s (2-) 1,481.98 MeV
189Tl 188.973588(12) 2.3(2) min (1/2+) 1,490.05 MeV
190Tl 189.97388(5) 2.6(3) min 2(-) 1,498.12 MeV
191Tl 190.971786(8) 20# min (1/2+) 1,506.19 MeV
192Tl 191.97223(3) 9.6(4) min (2-) 1,514.27 MeV
193Tl 192.97067(12) 21.6(8) min 1/2(+#) 1,522.34 MeV
194Tl 193.97120(15) 33.0(5) min 2- 1,530.41 MeV
195Tl 194.969774(15) 1.16(5) h 1/2+ 1,547.79 MeV
196Tl 195.970481(13) 1.84(3) h 2- 1,546.55 MeV
197Tl 196.969575(18) 2.84(4) h 1/2+ 1,563.94 MeV
198Tl 197.97048(9) 5.3(5) h 2- 1,562.69 MeV
199Tl 198.96988(3) 7.42(8) h 1/2+ 1,580.08 MeV
200Tl 199.970963(6) 26.1(1) h 2- 1,578.84 MeV
201Tl 200.970819(16) 72.912(17) h 1/2+ 1,586.91 MeV
202Tl 201.972106(16) 12.23(2) d 2- 1,594.98 MeV
203Tl 202.9723442(14) ESTÁVEL 1/2+ 1,603.05 MeV
204Tl 203.9738635(13) 3.78(2) a 2- 1,611.12 MeV
205Tl 204.9744275(14) ESTÁVEL 1/2+ 1,619.19 MeV
206Tl 205.9761103(15) 4.200(17) min 0- 1,627.26 MeV
207Tl 206.977419(6) 4.77(2) min 1/2+ 1,635.34 MeV
208Tl 207.9820187(21) 3.053(4) min 5(+) 1,634.09 MeV
209Tl 208.985359(8) 2.161(7) min (1/2+) 1,642.16 MeV
210Tl 209.990074(12) 1.30(3) min (5+)# 1,640.92 MeV
211Tl 210.99348(22)# 1# min [>300 ns] 1/2+# 1,648.99 MeV
212Tl 211.99823(32)# 30# s [>300 ns] 5+# 1,657.06 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 14

Abundância

Terra - Os compostos de origem: sulfides 15
Terra - A água do mar: 0.000019 mg/L 16
Terra -  crosta:  0.85 mg/kg = 0.000085% 16
Terra -  Total:  3.86 ppb 17
Planeta Mercúrio) -  Total:  0.044 ppb 17
Vênus -  Total:  4.05 ppb 17
condritos - Total: 0.001 (relative to 106 atoms of Si) 18

compostos

Informação de Segurança


Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:31.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 933.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(5) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(13) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(14) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(15) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(16) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(17) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(18) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.