LATA

Introdução

Número atômico: 50
Grupo: 14 or IV A
Peso atômico: 118.71
Período: 5
Número CAS: 7440-31-5

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

Known to the ancients. Tin is found chiefly in cassiterite (SnO2). Most of the world’s supply comes from Malaysia, Bolivia, China, Indonesia,Russia, Zaire, Thailand, and Nigeria. The U.S. produces almost none, although occurrences have been found in Alaska and Colorado. Tin is obtainedby reducing the ore with coal in a reverberatory furnace. Ordinary tin is composed of ten stable isotopes; thirty five unstable isotopes and isomers arealso known. Ordinary tin is a silver-white metal, is malleable, somewhat ductile, and has a highly crystalline structure. Due to the breaking of thesecrystals, a “tin cry” is heard when a bar is bent. The element has two allotropic forms at normal pressure. On warming, gray, or alpha tin, with a cubicstructure, changes at 13.2°C into white, or beta tin, the ordinary form of the metal. White tin has a tetragonal structure. When tin is cooled below 13.2°C,it changes slowly from white to gray. This change is affected by impurities such as aluminum and zinc, and can be prevented by small additions ofantimony or bismuth. This change from the alpha to beta form is called the tin pest. There are few if any uses for gray tin. Tin takes a high polish and is usedto coat other metals to prevent corrosion or other chemical action. Such tin plate over steel is used in the so-called tin can for preserving food. Alloysof tin are very important. Soft solder, type metal, fusible metal, pewter, bronze, bell metal, Babbitt metal, White metal, die casting alloy, and phosphorbronze are some of the important alloys using tin. Tin resists distilled sea and soft tap water, but is attacked by strong acids, alkalis, and acid salts. Oxygenin solution accelerates the attack. When heated in air, tin forms SnO2, which is feebly acid, forming stannate salts with basic oxides. The most importantsalt is the chloride (SnCl2 · H2O), which is used as a reducing agent and as a mordant in calico printing. Tin salts sprayed onto glass are used to produceelectrically conductive coatings. These have been used for panel lighting and for frost-free windshields. Most window glass is now made by floatingmolten glass on molten tin (float glass) to produce a flat surface (Pilkington process). Of recent interest is a crystalline tin-niobium alloy that issuperconductive at very low temperatures. This promises to be important in the construction of superconductive magnets that generate enormous fieldstrengths but use practically no power. Such magnets, made of tin-niobium wire, weigh but a few pounds and produce magnetic fields that, when startedwith a small battery, are comparable to that of a 100 ton electromagnet operated continuously with a large power supply. The small amount of tin foundin canned foods is quite harmless. The agreed limit of tin content in U.S. foods is 300 mg/kg. The trialkyl and triaryl tin compounds are used as biocidesand must be handled carefully. Over the past 25 years the price of commercial tin has varied from 50¢/lb ($1.10/kg) to its present price of about $4.30/lb ($9.50/kg) as of January 1996. Tin with a purity of 99.9999% is available at a price of about $4/g. 1

• "The major current use for tin is as a protective coating for steel, especially for cans used as food containers" 2
• "Tin is most commonly seen as a coating for iron in what we rather incorrectly call "tin" cans and roofing. When clean iron is plunged into melted tin, the tin sticks to or "wets" the iron, so that the iron, when withdrawn, is found to have a thin coating of tin. This, if thick enough, protects the iron from corrosion; and since tin is not acted on by fruit and vegetable juices, tinned iron (tin plate) makes a satisfactory container for many foods. Electroplating is cheaper than this hot-dip process.

Solder, babbitt metal, and most bronzes contain tin as one of their constituents. Pure tin, under the name black tin, is used for the pipes of soda-water fountains because it is not affected by the solution of carbon dioxide. Because it is not readily acted upon tin is also used in separators and pasteurizers for milk, and in tubes for toilet preparations. Tin foil is made by rolling the metal into thin sheets. Aluminum foil has largely replaced tin foil.

Tin compounds are sometimes used in dyeing, especially for silks; they brighten the colors and make the goods seem richer and heavier." 3

Propriedades físicas

Form:4 gray
Ponto de fusão:4*  13.2 °C = 286.35 K = 55.76 °F
Ponto de ebulição:4* 2602 °C = 2875.15 K = 4715.6 °F
Ponto de sublimação:4 
Ponto Triplo:4 
Ponto crítico:4 
Form:4 white
Ponto de fusão:4*  231.93 °C = 505.08 K = 449.474 °F
Ponto de ebulição:4* 2602 °C = 2875.15 K = 4715.6 °F
Ponto de sublimação:4 
Ponto Triplo:4 
Ponto crítico:4 
Densidade:5  5.769 (gray)/7.265 (white) g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron: [Kr] 5s2 4d10 5p2
Quadra: p
Mais alto nível de energia Ocupado: 5
Elétrons de valência: 4

Números quânticos:

n = 5
ℓ = 1
m = 0
ms = +½

Colagem

Eletronegatividade (escala Pauling):6 1.96
Electropositivity (escala Pauling): 2.04
Electron Affinity:7 1.112067 eV
oxidação Unidos: +4,2
Função no trabalho:8 4.35 eV = 6.9687E-19 J

potencial de ionização   eV 9  kJ/mol  
1 7.3439    708.6
potencial de ionização   eV 9  kJ/mol  
2 14.63225    1411.8
3 30.5026    2943.1
potencial de ionização   eV 9  kJ/mol  
4 40.73502    3930.3
5 72.28    6974.0

Termoquímica

Calor específico: 0.228 J/g°C 10 = 27.066 J/mol°C = 0.054 cal/g°C = 6.469 cal/mol°C
Condutividade térmica: 66.6 (W/m)/K, 27°C 11
Calor de fusão: 7.029 kJ/mol 12 = 59.2 J/g
Calor da vaporização: 295.8 kJ/mol 13 = 2491.8 J/g
Estado da matéria Entalpia de formação (ΔHf°)14 entropia (S°)14 Gibbs Energia Livre (ΔGf°)14
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s white) 0 0 12.32 51.54688 0 0
(s gray) -0.50 -2.092 10.55 44.1412 0.03 0.12552
(g) 72.2 302.0848 40.243 168.376712 63.9 267.3576

isótopos

nuclide Massa 15 Meia vida 15 spin nuclear 15 Energia de ligação
100Sn 99.93904(76) 1.1(4) s [0.94(+54-27) s] 0+ 824.83 MeV
101Sn 100.93606(32)# 3(1) s 5/2+# 841.29 MeV
102Sn 101.93030(14) 4.5(7) s 0+ 849.36 MeV
103Sn 102.92810(32)# 7.0(6) s 5/2+# 866.75 MeV
104Sn 103.92314(11) 20.8(5) s 0+ 874.82 MeV
105Sn 104.92135(9) 34(1) s (5/2+) 882.89 MeV
106Sn 105.91688(5) 115(5) s 0+ 900.28 MeV
107Sn 106.91564(9) 2.90(5) min (5/2+) 908.35 MeV
108Sn 107.911925(21) 10.30(8) min 0+ 916.42 MeV
109Sn 108.911283(11) 18.0(2) min 5/2(+) 924.49 MeV
110Sn 109.907843(15) 4.11(10) h 0+ 941.88 MeV
111Sn 110.907734(7) 35.3(6) min 7/2+ 949.95 MeV
112Sn 111.904818(5) ESTÁVEL 0+ 958.02 MeV
113Sn 112.905171(4) 115.09(3) d 1/2+ 966.09 MeV
114Sn 113.902779(3) ESTÁVEL 0+ 974.16 MeV
115Sn 114.903342(3) ESTÁVEL 1/2+ 982.23 MeV
116Sn 115.901741(3) ESTÁVEL 0+ 990.30 MeV
117Sn 116.902952(3) ESTÁVEL 1/2+ 998.37 MeV
118Sn 117.901603(3) ESTÁVEL 0+ 1,006.45 MeV
119Sn 118.903308(3) ESTÁVEL 1/2+ 1,014.52 MeV
120Sn 119.9021947(27) ESTÁVEL 0+ 1,022.59 MeV
121Sn 120.9042355(27) 27.03(4) h 3/2+ 1,030.66 MeV
122Sn 121.9034390(29) ESTÁVEL 0+ 1,038.73 MeV
123Sn 122.9057208(29) 129.2(4) d 11/2- 1,046.80 MeV
124Sn 123.9052739(15) ESTÁVEL 0+ 1,054.87 MeV
125Sn 124.9077841(16) 9.64(3) d 11/2- 1,062.95 MeV
126Sn 125.907653(11) 2.30(14)E+5 a 0+ 1,071.02 MeV
127Sn 126.910360(26) 2.10(4) h (11/2-) 1,069.77 MeV
128Sn 127.910537(29) 59.07(14) min 0+ 1,077.84 MeV
129Sn 128.91348(3) 2.23(4) min (3/2+)# 1,085.92 MeV
130Sn 129.913967(11) 3.72(7) min 0+ 1,093.99 MeV
131Sn 130.917000(23) 56.0(5) s (3/2+) 1,102.06 MeV
132Sn 131.917816(15) 39.7(8) s 0+ 1,110.13 MeV
133Sn 132.92383(4) 1.45(3) s (7/2-)# 1,108.89 MeV
134Sn 133.92829(11) 1.050(11) s 0+ 1,116.96 MeV
135Sn 134.93473(43)# 530(20) ms (7/2-) 1,115.71 MeV
136Sn 135.93934(54)# 0.25(3) s 0+ 1,123.78 MeV
137Sn 136.94599(64)# 190(60) ms 5/2-# 1,122.54 MeV
99Sn 98.94933(64)# 5# ms 9/2+# 807.45 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 15

reações

Abundância

Terra - Os compostos de origem: oxides 18
Terra - A água do mar: 0.000004 mg/L 19
Terra -  crosta:  2.3 mg/kg = 0.00023% 19
Terra -  Total:  390 ppb 20
Planeta Mercúrio) -  Total:  64 ppb 20
Vênus -  Total:  430 ppb 20
condritos - Total: 0.56 (relative to 106 atoms of Si) 21
Corpo humano - Total: 0.00002% 22

compostos

preços





Informação de Segurança


Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

revistas:
(1) Ehrenberg, Rachel. The Element Tin Flout's Carbon's Chemistry Rules. Science News, October 24, 2009, pp 13.

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:32.
(2) - Zumdahl, Steven S. Chemistry, 4th ed.; Houghton Mifflin: Boston, 1997; p 890.
(3) - Brownlee, Raymond B., Fuller, Robert W., and Whitsit, Jesse E. Elements of Chemistry; Allyn and Bacon: Boston, Massachusetts, 1959; p 557.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(6) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(8) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(13) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(14) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(15) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(16) - Halka, Monica and Nordstrom, Brian. Metals & Metalloids; Infobase Publishing: New York, NY, 2011; pg. 97.
(17) - Halka, Monica and Nordstrom, Brian. Metals & Metalloids; Infobase Publishing: New York, NY, 2011; pg. 49.
(18) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(19) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(20) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(21) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.
(22) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 7:17.