ANTIMÔNIO

Introdução

Número atômico: 51
Grupo: 15 or V A
Peso atômico: 121.76
Período: 5
Número CAS: 7440-36-0

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

Antimony was recognized in compounds by the ancients and was known as a metal at the beginning of the 17th century andpossibly much earlier. It is not abundant, but is found in over 100 mineral species. It is sometimes found native, but more frequently as the sulfide,stibnite (Sb2S3); it is also found as antimonides of the heavy metals, and as oxides. It is extracted from the sulfide by roasting to the oxide, which isreduced by salt and scrap iron; from its oxides it is also prepared by reduction with carbon. Two allotropic forms of antimony exist: the normal stable,metallic form, and the amorphous gray form. The so-called explosive antimony is an ill-defined material always containing an appreciable amountof halogen; therefore, it no longer warrants consideration as a separate allotrope. The yellow form, obtained by oxidation of stibine, SbH3, is probablyimpure, and is not a distinct form. Natural antimony is made of two stable isotopes, 121Sb and 123Sb. Forty four other radioactive isotopes and isomersare now recognized. Metallic antimony is an extremely brittle metal of a flaky, crystalline texture. It is bluish white and has a metallic luster. It is notacted on by air at room temperature, but burns brilliantly when heated with the formation of white fumes of Sb2O3. It is a poor conductor of heat andelectricity, and has a hardness of 3 to 3.5. Antimony, available commercially with a purity of 99.999 + %, is finding use in semiconductor technologyfor making infrared detectors, diodes, and Hall-effect devices. Commercial-grade antimony is widely used in alloys with percentages ranging from1 to 20. It greatly increases the hardness and mechanical strength of lead. Batteries, antifriction alloys, type metal, small arms and tracer bullets, cablesheathing, and minor products use about half the metal produced. Compounds taking up the other half are oxides, sulfides, sodium antimonate, andantimony trichloride. These are used in manufacturing flame-proofing compounds, paints, ceramic enamels, glass, and pottery. Tartar emetic (hydratedpotassium antimonyl tartate) has been used in medicine. Antimony and many of its compounds are toxic. Antimony costs about $1.30/kg or about $12/g (99.999%). 1

Propriedades físicas

Ponto de fusão:2*  630.63 °C = 903.78 K = 1167.134 °F
Ponto de ebulição:2* 1587 °C = 1860.15 K = 2888.6 °F
Ponto de sublimação:2 
Ponto Triplo:2 
Ponto crítico:2 
Densidade:3  6.68 g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron: [Kr] 5s2 4d10 5p3
Quadra: p
Mais alto nível de energia Ocupado: 5
Elétrons de valência: 5

Números quânticos:

n = 5
ℓ = 1
m = 1
ms = +½

Colagem

Eletronegatividade (escala Pauling):4 2.05
Electropositivity (escala Pauling): 1.95
Electron Affinity:5 1.046 eV
oxidação Unidos: +3,5
Função no trabalho:6 4.56 eV = 7.30512E-19 J

potencial de ionização   eV 7  kJ/mol  
1 8.6084    830.6
2 16.53051    1595.0
potencial de ionização   eV 7  kJ/mol  
3 25.3    2441.1
4 44.2    4264.7
potencial de ionização   eV 7  kJ/mol  
5 56    5403.2
6 108    10420.4

Termoquímica

Calor específico: 0.207 J/g°C 8 = 25.204 J/mol°C = 0.049 cal/g°C = 6.024 cal/mol°C
Condutividade térmica: 24.3 (W/m)/K, 27°C 9
Calor de fusão: 19.87 kJ/mol 10 = 163.2 J/g
Calor da vaporização: 77.14 kJ/mol 11 = 633.5 J/g
Estado da matéria Entalpia de formação (ΔHf°)12 entropia (S°)12 Gibbs Energia Livre (ΔGf°)12
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 10.92 45.68928 0 0
(g) 62.7 262.3368 43.06 180.16304 53.1 222.1704

isótopos

nuclide Massa 13 Meia vida 13 spin nuclear 13 Energia de ligação
103Sb 102.93969(32)# 100# ms [>1.5 μs] 5/2+# 856.65 MeV
104Sb 103.93647(39)# 0.47(13) s [0.44(+15-11) s] 864.72 MeV
105Sb 104.93149(11) 1.12(16) s (5/2+) 872.79 MeV
106Sb 105.92879(34)# 0.6(2) s (4+) 890.18 MeV
107Sb 106.92415(32)# 4.0(2) s 5/2+# 898.25 MeV
108Sb 107.92216(22)# 7.4(3) s (4+) 906.32 MeV
109Sb 108.918132(20) 17.3(5) s 5/2+# 923.71 MeV
110Sb 109.91675(22)# 23.0(4) s (4+) 931.78 MeV
111Sb 110.91316(3) 75(1) s (5/2+) 939.85 MeV
112Sb 111.912398(19) 51.4(10) s 3+ 947.92 MeV
113Sb 112.909372(19) 6.67(7) min 5/2+ 965.31 MeV
114Sb 113.90927(3) 3.49(3) min (3+) 973.38 MeV
115Sb 114.906598(17) 32.1(3) min 5/2+ 981.45 MeV
116Sb 115.906794(6) 15.8(8) min 3+ 989.52 MeV
117Sb 116.904836(10) 2.80(1) h 5/2+ 997.59 MeV
118Sb 117.905529(4) 3.6(1) min 1+ 1,005.66 MeV
119Sb 118.903942(9) 38.19(22) h 5/2+ 1,013.74 MeV
120Sb 119.905072(8) 15.89(4) min 1+ 1,021.81 MeV
121Sb 120.9038157(24) ESTÁVEL 5/2+ 1,029.88 MeV
122Sb 121.9051737(24) 2.7238(2) d 2- 1,037.95 MeV
123Sb 122.9042140(22) ESTÁVEL 7/2+ 1,046.02 MeV
124Sb 123.9059357(22) 60.20(3) d 3- 1,054.09 MeV
125Sb 124.9052538(28) 2.75856(25) a 7/2+ 1,062.16 MeV
126Sb 125.90725(3) 12.35(6) d (8-) 1,070.23 MeV
127Sb 126.906924(6) 3.85(5) d 7/2+ 1,078.31 MeV
128Sb 127.909169(27) 9.01(4) h 8- 1,086.38 MeV
129Sb 128.909148(23) 4.40(1) h 7/2+ 1,094.45 MeV
130Sb 129.911656(18) 39.5(8) min (8-)# 1,093.20 MeV
131Sb 130.911982(22) 23.03(4) min (7/2+) 1,101.28 MeV
132Sb 131.914467(15) 2.79(5) min (4+) 1,109.35 MeV
133Sb 132.915252(27) 2.5(1) min (7/2+) 1,117.42 MeV
134Sb 133.92038(5) 0.78(6) s (0-) 1,116.17 MeV
135Sb 134.92517(11) 1.68(2) s (7/2+) 1,124.25 MeV
136Sb 135.93035(32)# 0.923(14) s 1-# 1,123.00 MeV
137Sb 136.93531(43)# 450(50) ms 7/2+# 1,131.07 MeV
138Sb 137.94079(32)# 500# ms [>300 ns] 2-# 1,129.83 MeV
139Sb 138.94598(54)# 300# ms [>300 ns] 7/2+# 1,137.90 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 13

reações

Abundância

Terra - Os compostos de origem: sulfides 17
Terra - A água do mar: 0.00024 mg/L 18
Terra -  crosta:  0.2 mg/kg = 0.00002% 18
Terra -  Total:  35 ppb 19
Planeta Mercúrio) -  Total:  5.7 ppb 19
Vênus -  Total:  39 ppb 19
condritos - Total: 0.11 (relative to 106 atoms of Si) 20

compostos

preços





Informação de Segurança


Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:4.
(2) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(4) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(6) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(12) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(13) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(14) - Halka, Monica and Nordstrom, Brian. Metals & Metalloids; Infobase Publishing: New York, NY, 2011; pg. 98.
(15) - Halka, Monica and Nordstrom, Brian. Metals & Metalloids; Infobase Publishing: New York, NY, 2011; pg. 97.
(16) - Atkins, Jones, and Laverman. Chemical Principles 6th ed.; W.H. Freeman and Company: New York, NY, 2013; p F94.
(17) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(18) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(19) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(20) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.