LÍTIO

Introdução

Número atômico: 3
Grupo: 1 or I A
Peso atômico: 6.941
Período: 2
Número CAS: 7439-93-2

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

Discovered by Arfvedson in 1817. Lithium is the lightest of all metals, with a density only about half that of water. It does not occur free in nature; combined it is found in small amounts in nearly all igneous rocks and in the waters of many mineral springs. Lepidolite, spodumene, petalite, and amblygonite are the more important minerals containing it. Lithium is presently being recovered from brines of Searles Lake, in California, and from Nevada, Chile, and Argentina. Large deposits of spodumene are found in North Carolina. The metal is produced electrolytically from the fused chloride. Lithium is silvery in appearance, much like Na and K, other members of the alkali metal series. It reacts with water, but not as vigorously as sodium. Lithium imparts a beautiful crimson color to a flame, but when the metal burns strongly the flame is a dazzling white. Since World War II, the production of lithium metal and its compounds has increased greatly. Because the metal has the highest specific heat of any solid element, it has found use in heat transfer applications; however, it is corrosive and requires special handling. The metal has been used as an alloying agent, is of interest in synthesis of organic compounds, and has nuclear applications. It ranks as a leading contender as a battery anode material as it has a high electrochemical potential. Lithium is used in special glasses and ceramics. The glass for the 200-inch telescope at Mt. Palomar contains lithium as a minor ingredient. Lithium chloride is one of the most hygroscopic materials known, and it, as well as lithium bromide, is used in air conditioning and industrial drying systems. Lithium stearate is used as an all-purpose and high-temperature lubricant. Other lithium compounds are used in dry cells and storage batteries. Seven isotopes of lithium are recognized. Natural lithium contains two isotopes. The metal is priced at about $500/kg (99.9%). 1

• "It is used as a heat transfer medium in experimental nuclear reactors. Extremely light lithium-aluminum alloys are used in aircraft construction. Lithium compounds are used in some lightweight dry cells and storage batteries because they have very long lives, even in extreme temperatures...Lithium compounds are used for the treatment of some types of mental disorders (mainly manic depression)." 2

Propriedades físicas

Ponto de fusão:3*  180.50 °C = 453.65 K = 356.9 °F
Ponto de ebulição:3* 1342 °C = 1615.15 K = 2447.6 °F
Ponto de sublimação:3 
Ponto Triplo:3 
Ponto crítico:3 2950 °C = 3223.15 K = 5342 °F 3
Densidade:4  0.534 g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron: [He] 2s1
Quadra: s
Mais alto nível de energia Ocupado: 2
Elétrons de valência: 1

Números quânticos:

n = 2
ℓ = 0
m = 0
ms = +½

Colagem

Eletronegatividade (escala Pauling):5 0.98
Electropositivity (escala Pauling): 3.02
Electron Affinity:6 0.618049 eV
oxidação Unidos: +1
Função no trabalho:7 3.10 eV = 4.9662E-19 J

potencial de ionização   eV 8  kJ/mol  
1 5.39172    520.2
potencial de ionização   eV 8  kJ/mol  
2 75.64018    7298.2
potencial de ionização   eV 8  kJ/mol  
3 122.45429    11815.0

Termoquímica

Calor específico: 3.582 J/g°C 9 = 24.863 J/mol°C = 0.856 cal/g°C = 5.942 cal/mol°C
Condutividade térmica: 84.7 (W/m)/K, 27°C 10
Calor de fusão: 3 kJ/mol 11 = 432.2 J/g
Calor da vaporização: 145.92 kJ/mol 12 = 21022.9 J/g
Estado da matéria Entalpia de formação (ΔHf°)13 entropia (S°)13 Gibbs Energia Livre (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 29.1 121.7544 0 0
(ℓ) 0.569 2.380696 8.11 33.93224 0.223 0.933032
(g) 38.4 160.6656 33.14 138.65776 30.6 128.0304

isótopos

nuclide Massa 14 Meia vida 14 spin nuclear 14 Energia de ligação
10Li 10.035481(16) 2(5)E-21 s [1.2(3) MeV] (1-,2-) 45.76 MeV
11Li 11.043798(21) 8.75(14) ms 3/2- 46.38 MeV
12Li 12.053779(107)# <10 ns 45.14 MeV
4Li 4.02719(23) 91(9)E-24 s [6.3 MeV] 2- 4.69 MeV
5Li 5.01254(5) 370(30)E-24 s [~1.5 MeV] 3/2- 26.37 MeV
6Li 6.015122795(16) ESTÁVEL 1+ 32.02 MeV
7Li 7.01600455(8) ESTÁVEL 3/2- 39.25 MeV
8Li 8.022487359(10) 840.3(9) ms 2+ 41.36 MeV
9Li 9.026789499(21) 178.3(4) ms 3/2- 45.42 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 14

reações

Abundância

Terra - Os compostos de origem: silicates 18
Terra - A água do mar: 0.18 mg/L 19
Terra -  crosta:  20 mg/kg = 0.002% 19
Terra -  Total:  1.85 ppm 20
Planeta Mercúrio) -  Total:  0.87 ppm 20
Vênus -  Total:  1.94 ppm 20
condritos - Total: ~50 (relative to 106 atoms of Si) 21

compostos

Informação de Segurança

NFPA 704 Ratings:
Health: 3 - Short exposure could cause serious temporary or moderate residual injury.
Flammability: 0 - Will not burn.
Reactivity: 2 - Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water.
Special Hazard: W - Reacts with water in an unusual or dangerous manner.

Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

revistas:
(1) Moyer, Michael. How Much is Left?. Scientific American, September 2010, pp 74-81.
(2) Fischetti, Mark. Charge Under Control. Scientific American, August 2010, pp 26-27.

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:18.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 924.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(5) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(13) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(14) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(15) - Atkins, Jones, and Laverman. Chemical Principles 6th ed.; W.H. Freeman and Company: New York, NY, 2013; p F94.
(16) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 299.
(17) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 78.
(18) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(19) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(20) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(21) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.