ERBIUM

Introdução

Número atômico: 68
Grupo: Nenhum
Peso atômico: 167.259
Período: 6
Número CAS: 7440-52-0

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

Erbium, oneof the so-called rare-earth elements of the lanthanide series, is found in the minerals mentioned under dysprosium above. In 1842 Mosander separated“yttria,” found in the mineral gadolinite, into three fractions which he called yttria, erbia, and terbia. The names erbia and terbia became confusedin this early period. After 1860, Mosander’s terbia was known as erbia, and after 1877, the earlier known erbia became terbia. The erbia of this periodwas later shown to consist of five oxides, now known as erbia, scandia, holmia, thulia and ytterbia. By 1905 Urbain and James independently succeededin isolating fairly pure Er2O3. Klemm and Bommer first produced reasonably pure erbium metal in 1934 by reducing the anhydrous chloride withpotassium vapor. The pure metal is soft and malleable and has a bright, silvery, metallic luster. As with other rare-earth metals, its properties dependto a certain extent on the impurities present. The metal is fairly stable in air and does not oxidize as rapidly as some of the other rare-earth metals.Naturally occurring erbium is a mixture of six isotopes, all of which are stable. Twenty four radioactive isotopes of erbium are also recognized. Recentproduction techniques, using ion-exchange reactions, have resulted in much lower prices of the rare-earth metals and their compounds in recent years.The cost of 99.9% erbium metal is about $4/g. Erbium is finding nuclear and metallurgical uses. Added to vanadium, for example, erbium lowersthe hardness and improves workability. Most of the rare-earth oxides have sharp absorption bands in the visible, ultraviolet, and near infrared. Thisproperty, associated with the electronic structure, gives beautiful pastel colors to many of the rare-earth salts. Erbium oxide gives a pink color and hasbeen used as a colorant in glasses and porcelain enamel glazes. 1

• "tint[s] sunglasses." 2
• "is in optical fibers." 3

Propriedades físicas

Ponto de fusão:4*  1529 °C = 1802.15 K = 2784.2 °F
Ponto de ebulição:4* 2868 °C = 3141.15 K = 5194.4 °F
Ponto de sublimação:4 
Ponto Triplo:4 
Ponto crítico:4 
Densidade:5  9.07 g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron:  *[Xe] 6s2 4f12
Quadra: f
Mais alto nível de energia Ocupado: 6
Elétrons de valência: 2

Números quânticos:

n = 4
ℓ = 3
m = 1
ms = -½

Colagem

Eletronegatividade (escala Pauling):6 1.24
Electropositivity (escala Pauling): 2.76

potencial de ionização   eV 7  kJ/mol  
1 6.1077    589.3
potencial de ionização   eV 7  kJ/mol  
2 11.93    1151.1
potencial de ionização   eV 7  kJ/mol  
3 22.74    2194.1
4 42.7    4119.9

Termoquímica

Calor específico: 0.168 J/g°C 8 = 28.100 J/mol°C = 0.040 cal/g°C = 6.716 cal/mol°C
Condutividade térmica: 14.3 (W/m)/K, 27°C 9
Calor de fusão: 19.9 kJ/mol 10 = 119.0 J/g
Calor da vaporização: 261 kJ/mol 11 = 1560.5 J/g
Estado da matéria Entalpia de formação (ΔHf°)12 entropia (S°)12 Gibbs Energia Livre (ΔGf°)12
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 17.49 73.17816 0 0
(g) 75.8 317.1472 46.72 195.47648 67.2 281.1648

isótopos

nuclide Massa 13 Meia vida 13 spin nuclear 13 Energia de ligação
143Er 142.96634(64)# 200# ms 9/2-# 1,138.26 MeV
144Er 143.96038(43)# 400# ms [>200 ns] 0+ 1,146.33 MeV
145Er 144.95739(43)# 900(300) ms 1/2+# 1,163.71 MeV
146Er 145.95200(32)# 1.7(6) s 0+ 1,171.79 MeV
147Er 146.94949(32)# ~2.5 s (1/2+) 1,189.17 MeV
148Er 147.94455(21)# 4.6(2) s 0+ 1,197.24 MeV
149Er 148.94231(3) 4(2) s (1/2+) 1,205.31 MeV
150Er 149.937914(18) 18.5(7) s 0+ 1,222.70 MeV
151Er 150.937449(18) 23.5(13) s (7/2-) 1,230.77 MeV
152Er 151.935050(11) 10.3(1) s 0+ 1,238.84 MeV
153Er 152.935063(9) 37.1(2) s 7/2(-) 1,246.91 MeV
154Er 153.932783(6) 3.73(9) min 0+ 1,254.99 MeV
155Er 154.933209(7) 5.3(3) min 7/2- 1,263.06 MeV
156Er 155.931065(26) 19.5(10) min 0+ 1,271.13 MeV
157Er 156.93192(3) 18.65(10) min 3/2- 1,279.20 MeV
158Er 157.929893(27) 2.29(6) h 0+ 1,296.59 MeV
159Er 158.930684(5) 36(1) min 3/2- 1,295.34 MeV
160Er 159.929083(26) 28.58(9) h 0+ 1,312.73 MeV
161Er 160.929995(10) 3.21(3) h 3/2- 1,320.80 MeV
162Er 161.928778(4) ESTÁVEL 0+ 1,328.87 MeV
163Er 162.930033(6) 75.0(4) min 5/2- 1,327.63 MeV
164Er 163.929200(3) ESTÁVEL 0+ 1,345.01 MeV
165Er 164.930726(3) 10.36(4) h 5/2- 1,343.77 MeV
166Er 165.9302931(27) ESTÁVEL 0+ 1,351.84 MeV
167Er 166.9320482(27) ESTÁVEL 7/2+ 1,359.91 MeV
168Er 167.9323702(27) ESTÁVEL 0+ 1,367.98 MeV
169Er 168.9345904(27) 9.392(18) d 1/2- 1,376.06 MeV
170Er 169.9354643(30) ESTÁVEL 0+ 1,384.13 MeV
171Er 170.9380298(30) 7.516(2) h 5/2- 1,392.20 MeV
172Er 171.939356(5) 49.3(3) h 0+ 1,400.27 MeV
173Er 172.94240(21)# 1.434(17) min (7/2-) 1,399.03 MeV
174Er 173.94423(32)# 3.2(2) min 0+ 1,407.10 MeV
175Er 174.94777(43)# 1.2(3) min (9/2+) 1,415.17 MeV
176Er 175.95008(43)# 20# s 0+ 1,413.93 MeV
177Er 176.95405(54)# 3# s 1/2-# 1,422.00 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 13

Abundância

Terra - Os compostos de origem: phosphates 14
Terra - A água do mar: 0.00000087 mg/L 15
Terra -  crosta:  3.5 mg/kg = 0.00035% 15
Terra -  Total:  231 ppb 16
Planeta Mercúrio) -  Total:  177 ppb 16
Vênus -  Total:  242 ppb 16
condritos - Total: 0.23 (relative to 106 atoms of Si) 17

compostos

Informação de Segurança


Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

revistas:
(1) Folger, Tim. The Secret Ingredients of Everything. National Geographic, June 2011, pp 136-145.

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:11.
(2) - Folger, Tim. The Secret Ingredients of Everything. National Geographic, June 2011, p 140.
(3) - Folger, Tim. The Secret Ingredients of Everything. National Geographic, June 2011, p 143.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(6) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(12) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(13) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(14) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(15) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(16) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(17) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.