COBALTO

Introdução

Número atômico: 27
Grupo: 9 or VIII B
Peso atômico: 58.9332
Período: 4
Número CAS: 7440-48-4

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

Discovered by Brandt about 1735. Cobalt occurs in the mineral cobaltite, smaltite, and erythrite, and is often associatedwith nickel, silver, lead, copper, and iron ores, from which it is most frequently obtained as a by-product. It is also present in meteorites. Importantore deposits are found in Zaire, Morocco, and Canada. The U.S. Geological Survey has announced that the bottom of the north central Pacific Oceanmay have cobalt-rich deposits at relatively shallow depths in waters close to the Hawaiian Islands and other U.S. Pacific territories. Cobalt is a brittle,hard metal, closely resembling iron and nickel in appearance. It has a magnetic permeability of about two thirds that of iron. Cobalt tends to exist asa mixture of two allotropes over a wide temperature range; the beta-form predominates below 400°C, and the alpha above that temperature. The transformationis sluggish and accounts in part for the wide variation in reported data on physical properties of cobalt. It is alloyed with iron, nickel and other metalsto make Alnico, an alloy of unusual magnetic strength with many important uses. Stellite alloys, containing cobalt, chromium, and tungsten, are usedfor high-speed, heavy-duty, high temperature cutting tools, and for dies. Cobalt is also used in other magnet steels and stainless steels, and in alloysused in jet turbines and gas turbine generators. The metal is used in electroplating because of its appearance, hardness, and resistance to oxidation.The salts have been used for centuries for the production of brilliant and permanent blue colors in porcelain, glass, pottery, tiles, and enamels. It isthe principal ingredient in Sevre’s and Thenard’s blue. A solution of the chloride (CoCl2 · 6H2O) is used as sympathetic ink. The cobalt ammines areof interest; the oxide and the nitrate are important. Cobalt carefully used in the form of the chloride, sulfate, acetate, or nitrate has been found effectivein correcting a certain mineral deficiency disease in animals. Soils should contain 0.13 to 0.30 ppm of cobalt for proper animal nutrition. Cobalt is foundin Vitamin B-12, which is essential for human nutrition. Cobalt-60, an artificial isotope, is an important gamma ray source, and is extensively usedas a tracer and a radiotherapeutic agent. Single compact sources of Cobalt-60 vary from about $1 to $10/curie, depending on quantity and specificactivity. Twenty six isotopes and isomers of cobalt are known. 1

• "essential for vitamin B12, but the human body cannot make vitamin B12 from cobalt and thus requires the performed vitamin from dietary sources." 2

Propriedades físicas

Ponto de fusão:3*  1495 °C = 1768.15 K = 2723 °F
Ponto de ebulição:3* 2927 °C = 3200.15 K = 5300.6 °F
Ponto de sublimação:3 
Ponto Triplo:3 
Ponto crítico:3 
Densidade:4  8.86 g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron: [Ar] 4s2 3d7
Quadra: d
Mais alto nível de energia Ocupado: 4
Elétrons de valência: 

Números quânticos:

n = 3
ℓ = 2
m = -1
ms = -½

Colagem

Eletronegatividade (escala Pauling):5 1.88
Electropositivity (escala Pauling): 2.12
Electron Affinity:6 0.662 eV
oxidação Unidos: +2,3
Função no trabalho:7 4.70 eV = 7.5294E-19 J

potencial de ionização   eV 8  kJ/mol  
1 7.881    760.4
2 17.083    1648.3
3 33.5    3232.3
4 51.3    4949.7
5 79.5    7670.6
6 102    9841.5
7 128.9    12437.0
8 157.8    15225.4
9 186.13    17958.8
potencial de ionização   eV 8  kJ/mol  
10 275.4    26572.1
11 305    29428.0
12 336    32419.1
13 379    36567.9
14 411    39655.5
15 444    42839.5
16 511.96    49396.6
17 546.58    52736.9
18 1397.2    134809.3
potencial de ionização   eV 8  kJ/mol  
19 1504.6    145171.8
20 1603    154666.0
21 1735    167402.0
22 1846    178111.9
23 1962    189304.2
24 2119    204452.4
25 2219    214100.9
26 9544.1    920865.4
27 10012.12    966022.5

Termoquímica

Calor específico: 0.421 J/g°C 9 = 24.811 J/mol°C = 0.101 cal/g°C = 5.930 cal/mol°C
Condutividade térmica: 100 (W/m)/K, 27°C 10
Calor de fusão: 16.19 kJ/mol 11 = 274.7 J/g
Calor da vaporização: 376.5 kJ/mol 12 = 6388.6 J/g
Estado da matéria Entalpia de formação (ΔHf°)13 entropia (S°)13 Gibbs Energia Livre (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s hexagonal) 0 0 7.18 30.04112 0 0
(s face centered cubic) 0.11 0.46024 7.34 30.71056 0.06 0.25104
(g) -26.42 -110.54128 47.30 197.9032 -32.81 -137.27704

isótopos

nuclide Massa 14 Meia vida 14 spin nuclear 14 Energia de ligação
47Co 47.01149(54)# 7/2-# 347.98 MeV
48Co 48.00176(43)# 6+# 365.37 MeV
49Co 48.98972(28)# <35 ns 7/2-# 384.62 MeV
50Co 49.98154(18)# 44(4) ms (6+) 400.14 MeV
51Co 50.97072(16)# 60# ms [>200 ns] 7/2-# 418.46 MeV
52Co 51.96359(7)# 115(23) ms (6+) 433.05 MeV
53Co 52.954219(19) 242(8) ms 7/2-# 449.50 MeV
54Co 53.9484596(8) 193.28(7) ms 0+ 463.16 MeV
55Co 54.9419990(8) 17.53(3) h 7/2- 477.76 MeV
56Co 55.9398393(23) 77.233(27) d 4+ 487.69 MeV
57Co 56.9362914(8) 271.74(6) d 7/2- 498.56 MeV
58Co 57.9357528(13) 70.86(6) d 2+ 507.56 MeV
59Co 58.9331950(7) ESTÁVEL 7/2- 517.49 MeV
60Co 59.9338171(7) 5.2713(8) a 5+ 525.56 MeV
61Co 60.9324758(10) 1.650(5) h 7/2- 534.57 MeV
62Co 61.934051(21) 1.50(4) min 2+ 540.78 MeV
63Co 62.933612(21) 26.9(4) s 7/2- 549.78 MeV
64Co 63.935810(21) 0.30(3) s 1+ 555.99 MeV
65Co 64.936478(14) 1.20(6) s (7/2)- 563.13 MeV
66Co 65.93976(27) 0.18(1) s (3+) 568.40 MeV
67Co 66.94089(34) 0.425(20) s (7/2-)# 575.54 MeV
68Co 67.94487(34) 0.199(21) s (7-) 579.89 MeV
69Co 68.94632(36) 227(13) ms 7/2-# 586.10 MeV
70Co 69.9510(9) 119(6) ms (6-) 589.51 MeV
71Co 70.9529(9) 97(2) ms 7/2-# 596.65 MeV
72Co 71.95781(64)# 62(3) ms (6-,7-) 600.06 MeV
73Co 72.96024(75)# 41(4) ms 7/2-# 605.34 MeV
74Co 73.96538(86)# 50# ms [>300 ns] 0+ 608.76 MeV
75Co 74.96833(86)# 40# ms [>300 ns] 7/2-# 614.03 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 14

reações

2 Al (s) + 3 CoCl2 (aq) → 2 AlCl3 (aq) + 3 Co (s) 
Al2O3 + 3 C + 3 Cl2 → 2 AlCl3 + 3 CO  15
Bi2O3 (s) + 3 C (s graphite) → 3 Bi (s) + 3 CO (g) 16
C (s graphite) + 1 H2O (g) → CO (g) + H2 (g) 17
2 C (s graphite) + 1 O2 (g) → 2 CO (g) 18
C3H8 (g propane) + 3 H2O (g) → 3 CO (g) + 7 H2 (g) 19
2 Ca3(PO4)2 (s beta) + 6 SiO2 (s quartz) + 10 C (s graphite) → P4 (g) + 6 CaSiO3 (ℓ) + 10 CO (g) 20
CaO (s) + 3 C (s) → CaC2 (s) + CO (g) 21
CH3OH (ℓ methanol) → 2 H2 (g) + CO (g) 22
CH3OH (ℓ methanol) + 1 CO (g) → CH3COOH (ℓ) 23
2 CH3SH + 1 CO → CH3COSCH3 + H2S  24
2 CH4 (g methane) + 1 O2 (g) → 2 CO (g) + 4 H2 (g) 25
CH4 (g methane) + 1 H2O (g) → CO (g) + 3 H2 (g) 25
2 CO (g) + 1 O2 (g) → 2 CO2 (g) 26
CO2 (g) + 1 C (s) → 2 CO (g) 27
Fe2O3 (s hematite) + 3 CO (g) → 2 Fe (s alpha) + 3 CO2 (g) 28
Fe2O3 (s hematite) + 3 C (s graphite) → 2 Fe (s alpha) + 3 CO (g) 29
FeO (s) + 1 CO (g) → Fe (s alpha) + CO2 (g) 30
FeO (s) + 1 C (s graphite) → Fe (s alpha) + CO (g) 30
H2O (g) + 1 CO (g) → H2 (g) + CO2 (g) 31
HCOOH (ℓ) → H2O (ℓ) + CO (g) 32
Na2SO4 (s) + 4 C (s graphite) → Na2S (s) + 4 CO (g) 33
SiO2 (s quartz) + 2 C (s graphite) → Si (ℓ) + 2 CO (g) 34
SiO2 (g) + 2 C (s graphite) + 2 Cl2 (g) → SiCl4 (g) + 2 CO (g) 35
2 TiO2 (s rutile) + 3 C (s graphite) + 4 Cl2 (g) → 2 TiCl4 (g) + CO2 (g) + 2 CO (g) 36
ZnO + 1 C → Zn + CO  37
ZnO (s) + 1 CO (g) → Zn (s) + CO2 (g) 38
2 Ca3(PO4)2 (s beta) + 6 SiO2 (s quartz) + 10 C (s graphite) → P4 (g) + 6 CaSiO3 (s wollastonite) + 10 CO (g) 39
13 C (s graphite) + 3 Cr2O3 (s) → 2 Cr3C2 (s) + 9 CO (g) 40

Abundância

Terra - Os compostos de origem: sulfides 41
Terra - A água do mar: 0.00002 mg/L 42
Terra -  crosta:  25 mg/kg = 0.0025% 42
Terra -  Manto:  0.04% 43
Terra -  Testemunho:  0.6% 43
Terra -  litosfera:  0.003% 44
Terra -  Total:  840 ppm 45
Planeta Mercúrio) -  Total:  1690 ppm 45
Vênus -  Total:  820 ppm 45
condritos - Total: 1300 (relative to 106 atoms of Si) 46
Corpo humano - Total: 0.000002% 47

compostos

preços





Informação de Segurança


Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:9.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 927.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(5) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(13) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(14) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(15) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 369.
(16) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 128.
(17) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 128, 214, 264.
(18) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 138, 204.
(19) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 264.
(20) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 186.
(21) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 139.
(22) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; p 164.
(23) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 120.
(24) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 168.
(25) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 226.
(26) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 184.
(27) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 378.
(28) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 116, 224.
(29) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 134.
(30) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 378.
(31) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 3.
(32) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 182, 225.
(33) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 167.
(34) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 379.
(35) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 384.
(36) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 136.
(37) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 385.
(38) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 138.
(39) - Atkins, Jones, and Laverman. Chemical Principles 6th ed.; W.H. Freeman and Company: New York, NY, 2013; p F94.
(40) - Atkins, Jones, and Laverman. Chemical Principles 6th ed.; W.H. Freeman and Company: New York, NY, 2013; p F95.
(41) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(42) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(43) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 962.
(44) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 964.
(45) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(46) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.
(47) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 7:17.