BISMUTO

Introdução

Número atômico: 83
Grupo: 15 or V A
Peso atômico: 208.98038
Período: 6
Número CAS: 7440-69-9

Classificação

Calcogênio
halogênio
Gás nobre
Lantanóides
Actinóide
Terra-rara
Platinum Metal Group
Transuranium
Não Isótopos Estáveis
Sólido
Líquido
Gás
Sólido (previsto)

Descrição • Usos / Função

In early times bismuth was confused with tin and lead. Claude Geoffroy the Younger showed it to be distinct fromlead in 1753. It is a white crystalline, brittle metal with a pinkish tinge. It occurs native. The most important ores are bismuthinite or bismuth glance(Bi2S3) and bismite (Bi2O3). Peru, Japan, Mexico, Bolivia, and Canada are major bismuth producers. Much of the bismuth produced in the U.S. isobtained as a by-product in refining lead, copper, tin, silver, and gold ores. Bismuth is the most diamagnetic of all metals, and the thermal conductivityis lower than any metal, except mercury. It has a high electrical resistance, and has the highest Hall effect of any metal (i.e., greatest increase in electricalresistance when placed in a magnetic field). “Bismanol” is a permanent magnet of high coercive force, made of MnBi, by the U.S. Naval SurfaceWeapons Center. Bismuth expands 3.32% on solidification. This property makes bismuth alloys particularly suited to the making of sharp castingsof objects subject to damage by high temperatures. With other metals such as tin, cadmium, etc., bismuth forms low-melting alloys which areextensively used for safety devices in fire detection and extinguishing systems. Bismuth is used in producing malleable irons and is finding use as acatalyst for making acrylic fibers. When bismuth is heated in air it burns with a blue flame, forming yellow fumes of the oxide. The metal is also usedas a thermocouple material, and has found application as a carrier for U235 or U233 fuel in atomic reactors. Its soluble salts are characterized by forminginsoluble basic salts on the addition of water, a property sometimes used in detection work. Bismuth oxychloride is used extensively in cosmetics.Bismuth subnitrate and subcarbonate are used in medicine. Natural bismuth contains only one isotope 209Bi. Forty one isotopes and isomers of bismuthare known. Bismuth metal costs about $90/kg (99.999%). 1

Propriedades físicas

Ponto de fusão:2*  271.40 °C = 544.55 K = 520.52 °F
Ponto de ebulição:2* 1564 °C = 1837.15 K = 2847.2 °F
Ponto de sublimação:2 
Ponto Triplo:2 
Ponto crítico:2 
Densidade:3  9.79 g/cm3

* - at 1 atm

Configuração Electron

Configuração Electron: [Xe] 6s2 4f14 5d10 6p3
Quadra: p
Mais alto nível de energia Ocupado: 6
Elétrons de valência: 5

Números quânticos:

n = 6
ℓ = 1
m = 1
ms = +½

Colagem

Eletronegatividade (escala Pauling):4 1.9
Electropositivity (escala Pauling): 2.1
Electron Affinity:5 0.946 eV
oxidação Unidos: +3,5
Função no trabalho:6 4.36 eV = 6.98472E-19 J

potencial de ionização   eV 7  kJ/mol  
1 7.2856    703.0
2 16.69    1610.3
potencial de ionização   eV 7  kJ/mol  
3 25.56    2466.2
4 45.3    4370.8
potencial de ionização   eV 7  kJ/mol  
5 56    5403.2
6 88.3    8519.7

Termoquímica

Calor específico: 0.122 J/g°C 8 = 25.496 J/mol°C = 0.029 cal/g°C = 6.094 cal/mol°C
Condutividade térmica: 7.87 (W/m)/K, 27°C 9
Calor de fusão: 11.3 kJ/mol 10 = 54.1 J/g
Calor da vaporização: 104.8 kJ/mol 11 = 501.5 J/g
Estado da matéria Entalpia de formação (ΔHf°)12 entropia (S°)12 Gibbs Energia Livre (ΔGf°)12
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 13.56 56.73504 0 0
(g) 49.5 207.108 44.67 186.89928 40.2 168.1968

isótopos

nuclide Massa 13 Meia vida 13 spin nuclear 13 Energia de ligação
184Bi 184.00112(14)# 6.6(15) ms 3+# 1,420.19 MeV
185Bi 184.99763(6)# 2# ms 9/2-# 1,437.57 MeV
186Bi 185.99660(8) 14.8(7) ms (3+) 1,445.64 MeV
187Bi 186.993158(16) 32(3) ms 9/2-# 1,453.71 MeV
188Bi 187.99227(5) 44(3) ms 3+# 1,461.79 MeV
189Bi 188.98920(6) 674(11) ms (9/2-) 1,479.17 MeV
190Bi 189.9883(2) 6.3(1) s (3+) 1,487.24 MeV
191Bi 190.985786(8) 12.3(3) s (9/2-) 1,495.31 MeV
192Bi 191.98546(4) 34.6(9) s (3+) 1,503.39 MeV
193Bi 192.98296(1) 67(3) s (9/2-) 1,511.46 MeV
194Bi 193.98283(5) 95(3) s (3+) 1,519.53 MeV
195Bi 194.980651(6) 183(4) s (9/2-) 1,527.60 MeV
196Bi 195.980667(26) 5.1(2) min (3+) 1,535.67 MeV
197Bi 196.978864(9) 9.33(50) min (9/2-) 1,553.06 MeV
198Bi 197.97921(3) 10.3(3) min (2+,3+) 1,561.13 MeV
199Bi 198.977672(13) 27(1) min 9/2- 1,569.20 MeV
200Bi 199.978132(26) 36.4(5) min 7+ 1,577.27 MeV
201Bi 200.977009(16) 108(3) min 9/2- 1,585.34 MeV
202Bi 201.977742(22) 1.72(5) h 5(+#) 1,593.41 MeV
203Bi 202.976876(23) 11.76(5) h 9/2- 1,601.49 MeV
204Bi 203.977813(28) 11.22(10) h 6+ 1,609.56 MeV
205Bi 204.977389(8) 15.31(4) d 9/2- 1,617.63 MeV
206Bi 205.978499(8) 6.243(3) d 6(+) 1,625.70 MeV
207Bi 206.9784707(26) 32.9(14) a 9/2- 1,633.77 MeV
208Bi 207.9797422(25) 3.68(4)E+5 a (5)+ 1,641.84 MeV
209Bi 208.9803987(16) 1.9(2)E+19 a 9/2- 1,640.60 MeV
210Bi 209.9841204(16) 5.012(5) d 1- 1,648.67 MeV
211Bi 210.987269(6) 2.14(2) min 9/2- 1,656.74 MeV
212Bi 211.9912857(21) 60.55(6) min 1(-) 1,655.50 MeV
213Bi 212.994385(5) 45.59(6) min 9/2- 1,663.57 MeV
214Bi 213.998712(12) 19.9(4) min 1- 1,671.64 MeV
215Bi 215.001770(16) 7.6(2) min (9/2-) 1,670.40 MeV
216Bi 216.006306(12) 2.17(5) min 1-# 1,678.47 MeV
217Bi 217.00947(21)# 98.5(8) s 9/2-# 1,686.54 MeV
218Bi 218.01432(39)# 33(1) s 1-# 1,685.30 MeV
Os valores marcados # não são puramente derivado a partir de dados experimentais, mas, pelo menos, parcialmente a partir de tendências sistemáticas. Gira com argumentos de atribuição fracos estão entre parênteses. 13

reações

Abundância

Terra - Os compostos de origem: sulfides 15
Terra - A água do mar: 0.00002 mg/L 16
Terra -  crosta:  0.0085 mg/kg = 0.00000085% 16
Terra -  Total:  2.94 ppb 17
Planeta Mercúrio) -  Total:  0.034 ppb 17
Vênus -  Total:  3.08 ppb 17
condritos - Total: 0.002 (relative to 106 atoms of Si) 18

compostos

preços





Informação de Segurança


Material Safety Data Sheet - ACI Alloys, Inc.

Para maiores informações

Links externos:

Fontes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:5-4:6.
(2) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(4) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(6) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(12) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(13) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(14) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 128.
(15) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(16) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(17) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(18) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.