ITR

Wprowadzenie

Liczba atomowa: 39
Grupa: 3 or III B
Masa atomowa: 88.90585
Okres: 5
Numer CAS: 7440-65-5

Klasyfikacja

tlenowce
Fluorowiec
Gaz szlachetny
lantanowców
Actinoid
Rare Earth Element
Platinum Grupa Metal
Transuran
Brak stabilnego Izotopy
Solidny
Ciekły
Gaz
Solidny (przewidywane)

Opis • Zastosowania / Funkcja

Yttria, which is an earth containing yttrium, was discovered by Gadolin in 1794. Ytterby is the site of a quarry which yielded many unusually mineralscontaining rare earths and other elements. This small town, near Stockholm, bears the honor of giving names to erbium, terbium, and ytterbium as wellas yttrium. In 1843 Mosander showed that yttria could be resolved into the oxides (or earths) of three elements. The name yttria was reserved for themost basic one; the others were named erbia and terbia. Yttrium occurs in nearly all of the rare-earth minerals. Analysis of lunar rock samples obtainedduring the Apollo missions show a relatively high yttrium content. It is recovered commercially from monazite sand, which contains about 3%, andfrom bastnasite, which contains about 0.2%. Wohler obtained the impure element in 1828 by reduction of the anhydrous chloride with potassium. Themetal is now produced commercially by reduction of the fluoride with calcium metal. It can also be prepared by other techniques. Yttrium has a silvermetallicluster and is relatively stable in air. Turnings of the metal, however, ignite in air if their temperature exceeds 400°C, and finely divided yttriumis very unstable in air. Yttrium oxide is one of the most important compounds of yttrium and accounts for the largest use. It is widely used in makingYVO4 europium, and Y2O3 europium phosphors to give the red color in color television tubes. Many hundreds of thousands of pounds are now usedin this application. Yttrium oxide also is used to produce yttrium-iron-garnets, which are very effective microwave filters. Yttrium iron, aluminum,and gadolinium garnets, with formulas such as Y3Fe5O12 and Y3Al5O12, have interesting magnetic properties. Yttrium iron garnet is also exceptionallyefficient as both a transmitter and transducer of acoustic energy. Yttrium aluminum garnet, with a hardness of 8.5, is also finding use as a gemstone(simulated diamond). Small amounts of yttrium (0.1 to 0.2%) can be used to reduce the grain size in chromium, molybdenum, zirconium, and titanium,and to increase strength of aluminum and magnesium alloys. Alloys with other useful properties can be obtained by using yttrium as an additive. Themetal can be used as a deoxidizer for vanadium and other nonferrous metals. The metal has a low cross section for nuclear capture. 90Y, one of theisotopes of yttrium, exists in equilibrium with its parent 90Sr, a product of atomic explosions. Yttrium has been considered for use as a nodulizer forproducing nodular cast iron, in which the graphite forms compact nodules instead of the usual flakes. Such iron has increased ductility. Yttrium is alsofinding application in laser systems and as a catalyst for ethylene polymerization.It has also potential use in ceramic and glass formulas, as the oxidehas a high melting point and imparts shock resistance and low expansion characteristics to glass. Natural yttrium contains but one isotope, yttrium-89. Thirtyseven other unstable isotopes and isomers have been characterized. Yttrium metal of 99.9% purity is commercially available at a cost of about $4/g. 1

• "Night-vision goggles require...yttrium." 2
• "[in] a compact fluorescent lightbulb" 3

Właściwości fizyczne

Temperatura topnienia:4*  1522 °C = 1795.15 K = 2771.6 °F
Temperatura wrzenia:4* 3345 °C = 3618.15 K = 6053 °F
Punkt sublimacji:4 
Punkt potrójny:4 
Punkt krytyczny:4 
Gęstość:5  4.47 g/cm3

* - at 1 atm

Konfiguracja elektronów

Konfiguracja elektronów: [Kr] 5s2 4d1
Blok: d
Najwyższy poziom energii Zajęte: 5
Elektrony walencyjne: 

Liczby kwantowe:

n = 4
ℓ = 2
m = -2
ms = +½

klejenie

elektroujemność (Paulinga):6 1.22
Electropositivity (Paulinga): 2.78
powinowactwo elektronowe:7 0.307 eV
utlenianie Zjednoczone: +3
Funkcja pracy:8 3.1 eV = 4.9662E-19 J

Potencjał jonizacyjny   eV 9  kJ/mol  
1 6.2171    599.9
2 12.24    1181.0
3 20.52    1979.9
4 60.597    5846.7
Potencjał jonizacyjny   eV 9  kJ/mol  
5 77    7429.4
6 93    8973.1
7 116    11192.3
8 129    12446.6
Potencjał jonizacyjny   eV 9  kJ/mol  
9 146.2    14106.2
10 191    18428.7
11 206    19876.0
12 374    36085.5

Termochemia

Ciepło właściwe: 0.298 J/g°C 10 = 26.494 J/mol°C = 0.071 cal/g°C = 6.332 cal/mol°C
Przewodność cieplna: 17.2 (W/m)/K, 27°C 11
Ciepło topnienia: 11.4 kJ/mol 12 = 128.2 J/g
Ciepło parowania: 363 kJ/mol 13 = 4083.0 J/g
Stan skupienia Entalpia formacji (ΔHf°)14 Entropia (S°)14 Gibbs Free Energy (ΔGf°)14
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 10.62 44.43408 0 0
(g) 100.7 421.3288 42.87 179.36808 91.1 381.1624

izotopy

nuklidu Masa 15 Pół życia 15 spin jądrowy 15 Energia wiązania
100Y 99.92776(8) 735(7) ms 1-,2- 844.62 MeV
101Y 100.93031(10) 426(20) ms (5/2+) 849.89 MeV
102Y 101.93356(9) 0.30(1) s 857.97 MeV
103Y 102.93673(32)# 224(19) ms 5/2+# 866.04 MeV
104Y 103.94105(43)# 180(60) ms 864.79 MeV
105Y 104.94487(54)# 60# ms [>300 ns] 5/2+# 872.87 MeV
106Y 105.94979(75)# 50# ms [>300 ns] 880.94 MeV
107Y 106.95414(54)# 30# ms [>300 ns] 5/2+# 879.69 MeV
108Y 107.95948(86)# 20# [>300 ns] 887.76 MeV
76Y 75.95845(54)# 500# ns [>170 ns] 622.03 MeV
77Y 76.94965(7)# 63(17) ms 5/2+# 638.48 MeV
78Y 77.94361(43)# 54(5) ms (0+) 652.15 MeV
79Y 78.93735(48) 14.8(6) s (5/2+)# 665.81 MeV
80Y 79.93428(19) 30.1(5) s 4- 676.67 MeV
81Y 80.92913(7) 70.4(10) s (5/2+) 689.40 MeV
82Y 81.92679(11) 8.30(20) s 1+ 700.27 MeV
83Y 82.92235(5) 7.08(6) min 9/2+ 712.06 MeV
84Y 83.92039(10) 4.6(2) s 1+ 722.00 MeV
85Y 84.916433(20) 2.68(5) h (1/2)- 733.79 MeV
86Y 85.914886(15) 14.74(2) h 4- 743.73 MeV
87Y 86.9108757(17) 79.8(3) h 1/2- 755.53 MeV
88Y 87.9095011(20) 106.616(13) d 4- 764.53 MeV
89Y 88.9058483(27) STABILNY 1/2- 776.33 MeV
90Y 89.9071519(27) 64.053(20) h 2- 782.53 MeV
91Y 90.907305(3) 58.51(6) d 1/2- 790.61 MeV
92Y 91.908949(10) 3.54(1) h 2- 797.75 MeV
93Y 92.909583(11) 10.18(8) h 1/2- 804.89 MeV
94Y 93.911595(8) 18.7(1) min 2- 811.09 MeV
95Y 94.912821(8) 10.3(1) min 1/2- 818.23 MeV
96Y 95.915891(25) 5.34(5) s 0- 823.51 MeV
97Y 96.918134(13) 3.75(3) s (1/2-) 828.79 MeV
98Y 97.922203(26) 0.548(2) s (0)- 833.13 MeV
99Y 98.924636(26) 1.470(7) s (5/2+) 839.34 MeV
Wartości oznaczone # nie jest całkowicie pochodzą z danych doświadczalnych, ale przynajmniej częściowo z systematycznej tendencji. Obraca się słabe argumenty przypisania są w nawiasach. 15

Obfitość

Ziemia - Związki źródłowe: phosphates 16
Ziemia - Woda morska: 0.000013 mg/L 17
Ziemia -  Skorupa:  33 mg/kg = 0.0033% 17
Ziemia -  Całkowity:  2.62 ppm 18
Merkury) -  Całkowity:  2.01 ppm 18
Wenus -  Całkowity:  2.74 ppm 18
chondrytach - Całkowity: 3.4 (relative to 106 atoms of Si) 19

związki

Informacje dotyczące bezpieczeństwa


Karta Charakterystyki - ACI Alloys, Inc.

Po więcej informacji

Linki zewnętrzne:

magazyny:
(1) Folger, Tim. The Secret Ingredients of Everything. National Geographic, June 2011, pp 136-145.

źródła

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:35.
(2) - Folger, Tim. The Secret Ingredients of Everything. National Geographic, June 2011, p 140.
(3) - Folger, Tim. The Secret Ingredients of Everything. National Geographic, June 2011, p 140.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(6) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(8) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(13) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(14) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(15) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(16) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(17) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(18) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(19) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.