RTĘĆ

Wprowadzenie

Liczba atomowa: 80
Grupa: 12 or II B
Masa atomowa: 200.59
Okres: 6
Numer CAS: 7439-97-6

Klasyfikacja

tlenowce
Fluorowiec
Gaz szlachetny
lantanowców
Actinoid
Rare Earth Element
Platinum Grupa Metal
Transuran
Brak stabilnego Izotopy
Solidny
Ciekły
Gaz
Solidny (przewidywane)

Opis • Zastosowania / Funkcja

Known to ancient Chinese and Hindus; found in Egyptian tombs of 1500 B.C. Mercury is the only common metal liquid at ordinarytemperatures. It only rarely occurs free in nature. The chief ore is cinnabar (HgS). Spain and Italy produce about 50% of the world’s supply of themetal. The commercial unit for handling mercury is the “flask,” which weighs 76 lb (34.46 kg) and is priced at about $250. The metal is obtained byheating cinnabar in a current of air and by condensing the vapor. It is a heavy, silvery-white metal; a rather poor conductor of heat, as compared withother metals, and a fair conductor of electricity. It easily forms alloys with many metals, such as gold, silver, and tin, which are called amalgams. Itsease in amalgamating with gold is made use of in the recovery of gold from its ores. The metal is widely used in laboratory work for makingthermometers, barometers, diffusion pumps, and many other instruments. It is used in making mercury-vapor lamps and advertising signs, etc. andis used in mercury switches and other electrical apparatus. Other uses are in making pesticides, mercury cells for caustic soda and chlorine production,dental preparations, antifouling paint, batteries, and catalysts. The most important salts are mercuric chloride HgCl2 (corrosive sublimate — a violentpoison), mercurous chloride Hg2Cl2 (calomel, occasionally still used in medicine), mercury fulminate (Hg(ONC)2), a detonator widely used inexplosives, and mercuric sulfide (HgS, vermillion, a high-grade paint pigment). Organic mercury compounds are important. It has been found thatan electrical discharge causes mercury vapor to combine with neon, argon, krypton, and xenon. These products, held together with van der Waals’forces, correspond to HgNe, HgAr, HgKr, and HgXe. Mercury is a virulent poison and is readily absorbed through the respiratory tract, thegastrointestinal tract, or through unbroken skin. It acts as a cumulative poison and dangerous levels are readily attained in air. Air saturated with mercuryvapor at 20°C contains a concentration that exceeds the toxic limit many times. The danger increases at higher temperatures. It is therefore importantthat mercury be handled with care. Containers of mercury should be securely covered and spillage should be avoided. If it is necessary to heat mercuryor mercury compounds, it should be done in a well-ventilated hood. Methyl mercury is a dangerous pollutant and is now widely found in water andstreams. The triple point of mercury, –38.8344°C, is a fixed point on the International Temperature Scale (ITS-90). Native mercury contains sevenisotopes. Thirty five other isotopes and isomers are known. 1

• "The fact that mercury is a liquid at ordinary temperatures, with a low freezing point of -39°C and regularity of its expansion by heat makes it useful in thermometers. Its density, 13.6 makes it useful in barometers." 2

Właściwości fizyczne

Temperatura topnienia:3
Temperatura wrzenia:3* 356.73 °C = 629.88 K = 674.114 °F
Punkt sublimacji:3 
Punkt potrójny:3 -38.837 °C = 234.313 K = -37.9066 °F
Punkt krytyczny:3 1477 °C = 1750.15 K = 2690.6 °F 3
Gęstość:4  13.5336 g/cm3

* - at 1 atm

Konfiguracja elektronów

Konfiguracja elektronów: [Xe] 6s2 4f14 5d10
Blok: d
Najwyższy poziom energii Zajęte: 6
Elektrony walencyjne: 

Liczby kwantowe:

n = 5
ℓ = 2
m = 2
ms = -½

klejenie

elektroujemność (Paulinga):5 1.9
Electropositivity (Paulinga): 2.1
powinowactwo elektronowe:6 not stable eV
utlenianie Zjednoczone: +2,1
Funkcja pracy:7 4.50 eV = 7.209E-19 J

Potencjał jonizacyjny   eV 8  kJ/mol  
1 10.4375    1007.1
Potencjał jonizacyjny   eV 8  kJ/mol  
2 18.756    1809.7
Potencjał jonizacyjny   eV 8  kJ/mol  
3 34.2    3299.8

Termochemia

Ciepło właściwe: 0.140 J/g°C 9 = 28.083 J/mol°C = 0.033 cal/g°C = 6.712 cal/mol°C
Przewodność cieplna: 8.34 (W/m)/K, 27°C 10
Ciepło topnienia: 2.295 kJ/mol 11 = 11.4 J/g
Ciepło parowania: 59.229 kJ/mol 12 = 295.3 J/g
Stan skupienia Entalpia formacji (ΔHf°)13 Entropia (S°)13 Gibbs Free Energy (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(ℓ) 0 0 18.17 76.02328 0 0
(g) 14.655 61.31652 41.79 174.84936 7.613 31.852792

izotopy

nuklidu Masa 14 Pół życia 14 spin jądrowy 14 Energia wiązania
171Hg 171.00376(32)# 80(30) μs [59(+36-16) μs] 3/2-# 1,317.61 MeV
172Hg 171.99883(22) 420(240) μs [0.25(+35-9) ms] 0 1,334.99 MeV
173Hg 172.99724(22)# 1.1(4) ms [0.6(+5-2) ms] 3/2-# 1,343.06 MeV
174Hg 173.992864(21) 2.0(4) ms [2.1(+18-7) ms] 0+ 1,351.13 MeV
175Hg 174.99142(11) 10.8(4) ms 5/2-# 1,359.21 MeV
176Hg 175.987355(15) 20.4(15) ms 0+ 1,376.59 MeV
177Hg 176.98628(8) 127.3(18) ms 5/2-# 1,384.66 MeV
178Hg 177.982483(14) 0.269(3) s 0+ 1,392.73 MeV
179Hg 178.981834(29) 1.09(4) s 5/2-# 1,400.81 MeV
180Hg 179.978266(15) 2.58(1) s 0+ 1,418.19 MeV
181Hg 180.977819(17) 3.6(1) s 1/2(-) 1,426.26 MeV
182Hg 181.97469(1) 10.83(6) s 0+ 1,434.33 MeV
183Hg 182.974450(9) 9.4(7) s 1/2- 1,442.41 MeV
184Hg 183.971713(11) 30.6(3) s 0+ 1,450.48 MeV
185Hg 184.971899(17) 49.1(10) s 1/2- 1,458.55 MeV
186Hg 185.969362(12) 1.38(6) min 0+ 1,475.93 MeV
187Hg 186.969814(15) 1.9(3) min 3/2- 1,484.01 MeV
188Hg 187.967577(12) 3.25(15) min 0+ 1,492.08 MeV
189Hg 188.96819(4) 7.6(1) min 3/2- 1,500.15 MeV
190Hg 189.966322(17) 20.0(5) min 0+ 1,508.22 MeV
191Hg 190.967157(24) 49(10) min 3/2(-) 1,516.29 MeV
192Hg 191.965634(17) 4.85(20) h 0+ 1,524.36 MeV
193Hg 192.966665(17) 3.80(15) h 3/2- 1,532.43 MeV
194Hg 193.965439(13) 444(77) a 0+ 1,540.51 MeV
195Hg 194.966720(25) 10.53(3) h 1/2- 1,548.58 MeV
196Hg 195.965833(3) STABILNY 0+ 1,556.65 MeV
197Hg 196.967213(3) 64.14(5) h 1/2- 1,564.72 MeV
198Hg 197.9667690(4) STABILNY 0+ 1,572.79 MeV
199Hg 198.9682799(4) STABILNY 1/2- 1,580.86 MeV
200Hg 199.9683260(4) STABILNY 0+ 1,588.93 MeV
201Hg 200.9703023(6) STABILNY 3/2- 1,587.69 MeV
202Hg 201.9706430(6) STABILNY 0+ 1,595.76 MeV
203Hg 202.9728725(18) 46.595(6) d 5/2- 1,603.83 MeV
204Hg 203.9734939(4) STABILNY 0+ 1,611.90 MeV
205Hg 204.976073(4) 5.14(9) min 1/2- 1,619.97 MeV
206Hg 205.977514(22) 8.15(10) min 0+ 1,628.05 MeV
207Hg 206.98259(16) 2.9(2) min (9/2+) 1,626.80 MeV
208Hg 207.98594(32)# 42(5) min [41(+5-4) min] 0+ 1,634.87 MeV
209Hg 208.99104(21)# 37(8) s 9/2+# 1,633.63 MeV
210Hg 209.99451(32)# 10# min [>300 ns] 0+ 1,641.70 MeV
Wartości oznaczone # nie jest całkowicie pochodzą z danych doświadczalnych, ale przynajmniej częściowo z systematycznej tendencji. Obraca się słabe argumenty przypisania są w nawiasach. 14

reakcje

Obfitość

Ziemia - Związki źródłowe: sulfides 17
Ziemia - Woda morska: 0.00003 mg/L 18
Ziemia -  Skorupa:  0.085 mg/kg = 0.0000085% 18
Ziemia -  Całkowity:  7.9 ppb 19
Merkury) -  Całkowity:  0.09 ppb 19
Wenus -  Całkowity:  8.3 ppb 19
chondrytach - Całkowity: 0.10 (relative to 106 atoms of Si) 20

związki

Informacje dotyczące bezpieczeństwa


Karta Charakterystyki - ACI Alloys, Inc.

Po więcej informacji

Linki zewnętrzne:

magazyny:
(1) Putman, John J.. Quicksilver and Slow Death. National Geographic, October 1972, pp 507-527.

źródła

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:19.
(2) - Brownlee, Raymond B., Fuller, Robert W., and Whitsit, Jesse E. Elements of Chemistry; Allyn and Bacon: Boston, Massachusetts, 1959; p 538.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(5) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(13) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(14) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(15) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 74.
(16) - Halka, Monica and Nordstrom, Brian. Metals & Metalloids; Infobase Publishing: New York, NY, 2011; pg. 50.
(17) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(18) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(19) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(20) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.