ZIRCONIO

introduzione

Numero atomico: 40
Gruppo: 4 or IV B
Peso atomico: 91.224
Periodo: 5
Numero CAS: 7440-67-7

Classificazione

Metallo
Metalloide
simile a metallo
metallo alcalino
Alkali terroso
Metallo di transizione
calcogeno
alogena
Gas nobile
Lanthanoid
Actinoid
Terre rare
Platinum Metal Group
transuranici
Non ci sono isotopi stabili
Solido
Liquido
Gas
Solido (previsto)

Descrizione • Usi / Funzione

The name zircon may have originated from the Syriac word zargono, which describes the color of certain gemstones now known as zircon,jargon, hyacinth, jacinth, or ligure.This mineral, or its variations, is mentioned in biblical writings. These minerals were not known to contain thiselement until Klaproth, in 1789, analyzed a jargon from Ceylon and found a new earth, which Werner named zircon (silex circonius), and Klaprothcalled Zirkonerde (zirconia). The impure metal was first isolated by Berzelius in 1824 by heating a mixture of potassium and potassium zirconiumfluoride in a small iron tube. Pure zirconium was first prepared in 1914. Very pure zirconium was first produced in 1925 by van Arkel and de Boerby an iodide decomposition process they developed. Zirconium is found in abundance in S-type stars, and has been identified in the sun and meteorites.Analyses of lunar rock samples obtained during the various Apollo missions to the moon show a surprisingly high zirconium oxide content, comparedwith terrestial rocks. Naturally occurring zirconium contains five isotopes. Twenty six other radioactive isotopes and isomers are known to exist.Zircon, ZrSiO4, the principal ore, is found in deposits in Florida, South Carolina, Australia, and Brazil. Baddeleyite, found in Brazil, is an importantzirconium mineral. It is principally pure ZrO2in crystalline form having a hafnium content of about 1%. Zirconium also occurs in some 30 otherrecognized mineral species. Zirconium is produced commercially by reduction of the chloride with magnesium (the Kroll Process), and by othermethods. It is a grayish-white lustrous metal. When finely divided, the metal may ignite spontaneously in air, especially at elevated temperatures. Thesolid metal is much more difficult to ignite. The inherent toxicity of zirconium compounds is low. Hafnium is invariably found in zirconium ores, andthe separation is difficult. Commercial-grade zirconium contains from 1 to 3% hafnium. Zirconium has a low absorption cross section for neutrons,and is therefore used for nuclear energy applications, such as for cladding fuel elements. Commercial nuclear power generation now takes more than90% of zirconium metal production. Reactors of the size now being made may use as much as a half-million lineal feet of zirconium alloy tubing.Reactor-grade zirconium is essentially free of hafnium. Zircaloy (R) is an important alloy developed specifically for nuclear applications. Zirconiumis exceptionally resistant to corrosion by many common acids and alkalis, by sea water, and by other agents. It is used extensively by the chemicalindustry where corrosive agents are employed. Zirconium is used as a getter in vacuum tubes, as an alloying agent in steel, in surgical appliances,photoflash bulbs, explosive primers, rayon spinnerets, lamp filaments, etc. It is used in poison ivy lotions in the form of the carbonate as it combineswith urushiol. With niobium, zirconium is superconductive at low temperatures and is used to make superconductive magnets, which offer hope ofdirect large-scale generation of electric power. Alloyed with zinc, zirconium becomes magnetic at temperatures below 35 K. Zirconium oxide (zircon)has a high index of refraction and is used as a gem material. The impure oxide, zirconia, is used for laboratory crucibles that will withstand heat shock,for linings of metallurgical furnaces, and by the glass and ceramic industries as a refractory material. Its use as a refractory material accounts for a largeshare of all zirconium consumed. Zirconium of about 99.8% purity is available at a cost of about $170/kg. 1

• "A number of transition metals (Ti, Zr, Hf, V, Nb, Ta, Mo, W) form interstitial carbides of composition MC and, in some cases, M2C. These carbides have extremely high melting points; they are very hard, and they are good electrical conductors." 2
• "Recent studies have shown that the addition of small amounts of zirconium to scandium-aluminum alloys can have a dramatic effect on strength and thermal stability." 3

Proprietà fisiche

Punto di fusione:4*  1855 °C = 2128.15 K = 3371 °F
Punto di ebollizione:4* 4409 °C = 4682.15 K = 7968.2 °F
sublimazione Point:4 
Triple Point:4 
Punto critico:4 
Densità:5  6.52 g/cm3

* - at 1 atm

configurazione elettronica

configurazione elettronica: [Kr] 5s2 4d2
Bloccare: d
Più alto livello di energia Occupato: 5
Elettroni di valenza: 

numeri quantici:

n = 4
ℓ = 2
m = -1
ms = +½

bonding

elettronegatività (scala Pauling):6 1.33
Electropositivity (scala Pauling): 2.67
Affinità elettronica:7 0.426 eV
ossidazione Uniti: +4
Funzione di lavoro:8 4.00 eV = 6.408E-19 J

potenziale di ionizzazione   eV 9  kJ/mol  
1 6.6339    640.1
potenziale di ionizzazione   eV 9  kJ/mol  
2 13.13    1266.9
3 22.99    2218.2
potenziale di ionizzazione   eV 9  kJ/mol  
4 34.34    3313.3
5 80.348    7752.4

Termochimica

Calore specifico: 0.278 J/g°C 10 = 25.360 J/mol°C = 0.066 cal/g°C = 6.061 cal/mol°C
Conduttività termica: 22.7 (W/m)/K, 27°C 11
Calore di fusione: 16.9 kJ/mol 12 = 185.3 J/g
Calore di vaporizzazione: 58.2 kJ/mol 13 = 638.0 J/g
Stato della materia Entalpia di formazione (ΔHf°)14 entropia (S°)14 Energia libera di Gibbs (ΔGf°)14
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s alpha hexagonal) 0 0 9.32 38.99488 0 0
(s beta) 1.71 7.15464 11.15 46.6516 1.16 4.85344

isotopi

nuclide Massa 15 Metà vita 15 spin nucleare 15 Energia di legame
100Zr 99.91776(4) 7.1(4) s 0+ 853.15 MeV
101Zr 100.92114(3) 2.3(1) s 3/2+ 858.43 MeV
102Zr 101.92298(5) 2.9(2) s 0+ 866.50 MeV
103Zr 102.92660(12) 1.3(1) s (5/2-) 874.57 MeV
104Zr 103.92878(43)# 1.2(3) s 0+ 882.64 MeV
105Zr 104.93305(43)# 0.6(1) s 881.40 MeV
106Zr 105.93591(54)# 200# ms [>300 ns] 0+ 889.47 MeV
107Zr 106.94075(32)# 150# ms [>300 ns] 888.23 MeV
108Zr 107.94396(64)# 80# ms [>300 ns] 0+ 896.30 MeV
109Zr 108.94924(54)# 60# ms [>300 ns] 904.37 MeV
110Zr 109.95287(86)# 30# ms [>300 ns] 0+ 903.12 MeV
78Zr 77.95523(54)# 50# ms [>170 ns] 0+ 640.18 MeV
79Zr 78.94916(43)# 56(30) ms 5/2+# 653.85 MeV
80Zr 79.9404(16) 4.6(6) s 0+ 670.30 MeV
81Zr 80.93721(18) 5.5(4) s (3/2-)# 681.17 MeV
82Zr 81.93109(24)# 32(5) s 0+ 694.83 MeV
83Zr 82.92865(10) 41.6(24) s (1/2-)# 705.69 MeV
84Zr 83.92325(21)# 25.9(7) min 0+ 718.42 MeV
85Zr 84.92147(11) 7.86(4) min 7/2+ 728.35 MeV
86Zr 85.91647(3) 16.5(1) h 0+ 741.08 MeV
87Zr 86.914816(9) 1.68(1) h (9/2)+ 751.02 MeV
88Zr 87.910227(11) 83.4(3) d 0+ 762.82 MeV
89Zr 88.908890(4) 78.41(12) h 9/2+ 772.75 MeV
90Zr 89.9047044(25) STABILE 0+ 784.55 MeV
91Zr 90.9056458(25) STABILE 5/2+ 791.69 MeV
92Zr 91.9050408(25) STABILE 0+ 799.76 MeV
93Zr 92.9064760(25) 1.53(10)E+6 a 5/2+ 806.90 MeV
94Zr 93.9063152(26) STABILE 0+ 814.97 MeV
95Zr 94.9080426(26) 64.032(6) d 5/2+ 821.18 MeV
96Zr 95.9082734(30) 20(4)E+18 a 0+ 829.25 MeV
97Zr 96.9109531(30) 16.744(11) h 1/2+ 835.46 MeV
98Zr 97.912735(21) 30.7(4) s 0+ 841.67 MeV
99Zr 98.916512(22) 2.1(1) s 1/2+ 846.01 MeV
I valori assegnati # non sono puramente derivati ​​da dati sperimentali, ma almeno parzialmente da tendenze sistematiche. Gira con argomenti di assegnazione deboli sono racchiusi tra parentesi. 15

Abbondanza

Terra - composti di origine: oxides 16
Terra - L'acqua di mare: 0.00003 mg/L 17
Terra -  Crosta:  165 mg/kg = 0.0165% 17
Terra -  Totale:  7.2 ppm 18
Pianeta Mercurio) -  Totale:  5.5 ppm 18
Venere -  Totale:  7.5 ppm 18
condriti - Totale: ~37 (relative to 106 atoms of Si) 19

Composti

Informazioni sulla sicurezza


Scheda di sicurezza - ACI Alloys, Inc.

Per maggiori informazioni

Link esterno:

fonti

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:36.
(2) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 119.
(3) - Halka, Monica and Nordstrom, Brian. Transition Metals; Infobase Publishing: New York, NY, 2011; p 10.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(6) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(8) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(13) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(14) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(15) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(16) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(17) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(18) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(19) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.