LITHIUM

introduction

Numéro atomique: 3
Groupe: 1 or I A
Poids atomique: 6.941
Période: 2
Numero CAS: 7439-93-2

Classification

chalcogènes
Halogène
Gaz rare
lanthanides
actinides
Rare Earth Element
Groupe Platine Métal
Transuranium
Pas d'isotopes stables
Solide
Liquide
Gaz
Solide (prédit)

La description • Usages / Fonction

Discovered by Arfvedson in 1817. Lithium is the lightest of all metals, with a density only about half that of water. It does not occur free in nature; combined it is found in small amounts in nearly all igneous rocks and in the waters of many mineral springs. Lepidolite, spodumene, petalite, and amblygonite are the more important minerals containing it. Lithium is presently being recovered from brines of Searles Lake, in California, and from Nevada, Chile, and Argentina. Large deposits of spodumene are found in North Carolina. The metal is produced electrolytically from the fused chloride. Lithium is silvery in appearance, much like Na and K, other members of the alkali metal series. It reacts with water, but not as vigorously as sodium. Lithium imparts a beautiful crimson color to a flame, but when the metal burns strongly the flame is a dazzling white. Since World War II, the production of lithium metal and its compounds has increased greatly. Because the metal has the highest specific heat of any solid element, it has found use in heat transfer applications; however, it is corrosive and requires special handling. The metal has been used as an alloying agent, is of interest in synthesis of organic compounds, and has nuclear applications. It ranks as a leading contender as a battery anode material as it has a high electrochemical potential. Lithium is used in special glasses and ceramics. The glass for the 200-inch telescope at Mt. Palomar contains lithium as a minor ingredient. Lithium chloride is one of the most hygroscopic materials known, and it, as well as lithium bromide, is used in air conditioning and industrial drying systems. Lithium stearate is used as an all-purpose and high-temperature lubricant. Other lithium compounds are used in dry cells and storage batteries. Seven isotopes of lithium are recognized. Natural lithium contains two isotopes. The metal is priced at about $500/kg (99.9%). 1

• "It is used as a heat transfer medium in experimental nuclear reactors. Extremely light lithium-aluminum alloys are used in aircraft construction. Lithium compounds are used in some lightweight dry cells and storage batteries because they have very long lives, even in extreme temperatures...Lithium compounds are used for the treatment of some types of mental disorders (mainly manic depression)." 2

Propriétés physiques

Point de fusion:3*  180.50 °C = 453.65 K = 356.9 °F
Point d'ébullition:3* 1342 °C = 1615.15 K = 2447.6 °F
sublimation point:3 
Triple point:3 
Point critique:3 2950 °C = 3223.15 K = 5342 °F 3
Densité:4  0.534 g/cm3

* - at 1 atm

Configuration de l'électron

Configuration de l'électron: [He] 2s1
Bloque: s
Plus haut niveau d'énergie occupés: 2
Électrons de valence: 1

Nombres quantiques:

n = 2
ℓ = 0
m = 0
ms = +½

Bonding

Électronégativité (échelle de Pauling):5 0.98
Electropositivity (échelle de Pauling): 3.02
Electron Affinity:6 0.618049 eV
oxydation États: +1
Fonction de travail:7 3.10 eV = 4.9662E-19 J

ionisation potentiel   eV 8  kJ/mol  
1 5.39172    520.2
ionisation potentiel   eV 8  kJ/mol  
2 75.64018    7298.2
ionisation potentiel   eV 8  kJ/mol  
3 122.45429    11815.0

Thermochimie

Chaleur spécifique: 3.582 J/g°C 9 = 24.863 J/mol°C = 0.856 cal/g°C = 5.942 cal/mol°C
Conductivité thermique: 84.7 (W/m)/K, 27°C 10
Température de fusion: 3 kJ/mol 11 = 432.2 J/g
Chaleur de vaporisation: 145.92 kJ/mol 12 = 21022.9 J/g
État de la matière Enthalpie de formation (ΔHf°)13 Entropy (S°)13 Gibbs Free Energy (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 29.1 121.7544 0 0
(ℓ) 0.569 2.380696 8.11 33.93224 0.223 0.933032
(g) 38.4 160.6656 33.14 138.65776 30.6 128.0304

isotopes

Nuclide Masse 14 Demi vie 14 Spin nucléaire 14 Énergie de liaison
10Li 10.035481(16) 2(5)E-21 s [1.2(3) MeV] (1-,2-) 45.76 MeV
11Li 11.043798(21) 8.75(14) ms 3/2- 46.38 MeV
12Li 12.053779(107)# <10 ns 45.14 MeV
4Li 4.02719(23) 91(9)E-24 s [6.3 MeV] 2- 4.69 MeV
5Li 5.01254(5) 370(30)E-24 s [~1.5 MeV] 3/2- 26.37 MeV
6Li 6.015122795(16) STABLE 1+ 32.02 MeV
7Li 7.01600455(8) STABLE 3/2- 39.25 MeV
8Li 8.022487359(10) 840.3(9) ms 2+ 41.36 MeV
9Li 9.026789499(21) 178.3(4) ms 3/2- 45.42 MeV
Les valeurs marquées # ne sont pas purement dérivées des données expérimentales, mais au moins en partie des tendances systématiques. Spins avec de faibles arguments d'affectation sont entre parenthèses. 14

Réactions

Abondance

Terre - composés Source: silicates 18
Terre - Seawater: 0.18 mg/L 19
Terre -  Croûte:  20 mg/kg = 0.002% 19
Terre -  Total:  1.85 ppm 20
Planète Mercure) -  Total:  0.87 ppm 20
Vénus -  Total:  1.94 ppm 20
chondrites - Total: ~50 (relative to 106 atoms of Si) 21

composés

Information de sécurité

NFPA 704 Ratings:
Health: 3 - Short exposure could cause serious temporary or moderate residual injury.
Flammability: 0 - Will not burn.
Reactivity: 2 - Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water.
Special Hazard: W - Reacts with water in an unusual or dangerous manner.

Fiche signalétique - ACI Alloys, Inc.

Pour plus d'informations

Liens externes:

Les magazines:
(1) Moyer, Michael. How Much is Left?. Scientific American, September 2010, pp 74-81.
(2) Fischetti, Mark. Charge Under Control. Scientific American, August 2010, pp 26-27.

Sources

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:18.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 924.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(5) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(13) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(14) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(15) - Atkins, Jones, and Laverman. Chemical Principles 6th ed.; W.H. Freeman and Company: New York, NY, 2013; p F94.
(16) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 299.
(17) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 78.
(18) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(19) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(20) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(21) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.