COBALT

introduction

Numéro atomique: 27
Groupe: 9 or VIII B
Poids atomique: 58.9332
Période: 4
Numero CAS: 7440-48-4

Classification

chalcogènes
Halogène
Gaz rare
lanthanides
actinides
Rare Earth Element
Groupe Platine Métal
Transuranium
Pas d'isotopes stables
Solide
Liquide
Gaz
Solide (prédit)

La description • Usages / Fonction

Discovered by Brandt about 1735. Cobalt occurs in the mineral cobaltite, smaltite, and erythrite, and is often associatedwith nickel, silver, lead, copper, and iron ores, from which it is most frequently obtained as a by-product. It is also present in meteorites. Importantore deposits are found in Zaire, Morocco, and Canada. The U.S. Geological Survey has announced that the bottom of the north central Pacific Oceanmay have cobalt-rich deposits at relatively shallow depths in waters close to the Hawaiian Islands and other U.S. Pacific territories. Cobalt is a brittle,hard metal, closely resembling iron and nickel in appearance. It has a magnetic permeability of about two thirds that of iron. Cobalt tends to exist asa mixture of two allotropes over a wide temperature range; the beta-form predominates below 400°C, and the alpha above that temperature. The transformationis sluggish and accounts in part for the wide variation in reported data on physical properties of cobalt. It is alloyed with iron, nickel and other metalsto make Alnico, an alloy of unusual magnetic strength with many important uses. Stellite alloys, containing cobalt, chromium, and tungsten, are usedfor high-speed, heavy-duty, high temperature cutting tools, and for dies. Cobalt is also used in other magnet steels and stainless steels, and in alloysused in jet turbines and gas turbine generators. The metal is used in electroplating because of its appearance, hardness, and resistance to oxidation.The salts have been used for centuries for the production of brilliant and permanent blue colors in porcelain, glass, pottery, tiles, and enamels. It isthe principal ingredient in Sevre’s and Thenard’s blue. A solution of the chloride (CoCl2 · 6H2O) is used as sympathetic ink. The cobalt ammines areof interest; the oxide and the nitrate are important. Cobalt carefully used in the form of the chloride, sulfate, acetate, or nitrate has been found effectivein correcting a certain mineral deficiency disease in animals. Soils should contain 0.13 to 0.30 ppm of cobalt for proper animal nutrition. Cobalt is foundin Vitamin B-12, which is essential for human nutrition. Cobalt-60, an artificial isotope, is an important gamma ray source, and is extensively usedas a tracer and a radiotherapeutic agent. Single compact sources of Cobalt-60 vary from about $1 to $10/curie, depending on quantity and specificactivity. Twenty six isotopes and isomers of cobalt are known. 1

• "essential for vitamin B12, but the human body cannot make vitamin B12 from cobalt and thus requires the performed vitamin from dietary sources." 2

Propriétés physiques

Point de fusion:3*  1495 °C = 1768.15 K = 2723 °F
Point d'ébullition:3* 2927 °C = 3200.15 K = 5300.6 °F
sublimation point:3 
Triple point:3 
Point critique:3 
Densité:4  8.86 g/cm3

* - at 1 atm

Configuration de l'électron

Configuration de l'électron: [Ar] 4s2 3d7
Bloque: d
Plus haut niveau d'énergie occupés: 4
Électrons de valence: 

Nombres quantiques:

n = 3
ℓ = 2
m = -1
ms = -½

Bonding

Électronégativité (échelle de Pauling):5 1.88
Electropositivity (échelle de Pauling): 2.12
Electron Affinity:6 0.662 eV
oxydation États: +2,3
Fonction de travail:7 4.70 eV = 7.5294E-19 J

ionisation potentiel   eV 8  kJ/mol  
1 7.881    760.4
2 17.083    1648.3
3 33.5    3232.3
4 51.3    4949.7
5 79.5    7670.6
6 102    9841.5
7 128.9    12437.0
8 157.8    15225.4
9 186.13    17958.8
ionisation potentiel   eV 8  kJ/mol  
10 275.4    26572.1
11 305    29428.0
12 336    32419.1
13 379    36567.9
14 411    39655.5
15 444    42839.5
16 511.96    49396.6
17 546.58    52736.9
18 1397.2    134809.3
ionisation potentiel   eV 8  kJ/mol  
19 1504.6    145171.8
20 1603    154666.0
21 1735    167402.0
22 1846    178111.9
23 1962    189304.2
24 2119    204452.4
25 2219    214100.9
26 9544.1    920865.4
27 10012.12    966022.5

Thermochimie

Chaleur spécifique: 0.421 J/g°C 9 = 24.811 J/mol°C = 0.101 cal/g°C = 5.930 cal/mol°C
Conductivité thermique: 100 (W/m)/K, 27°C 10
Température de fusion: 16.19 kJ/mol 11 = 274.7 J/g
Chaleur de vaporisation: 376.5 kJ/mol 12 = 6388.6 J/g
État de la matière Enthalpie de formation (ΔHf°)13 Entropy (S°)13 Gibbs Free Energy (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s hexagonal) 0 0 7.18 30.04112 0 0
(s face centered cubic) 0.11 0.46024 7.34 30.71056 0.06 0.25104
(g) -26.42 -110.54128 47.30 197.9032 -32.81 -137.27704

isotopes

Nuclide Masse 14 Demi vie 14 Spin nucléaire 14 Énergie de liaison
47Co 47.01149(54)# 7/2-# 347.98 MeV
48Co 48.00176(43)# 6+# 365.37 MeV
49Co 48.98972(28)# <35 ns 7/2-# 384.62 MeV
50Co 49.98154(18)# 44(4) ms (6+) 400.14 MeV
51Co 50.97072(16)# 60# ms [>200 ns] 7/2-# 418.46 MeV
52Co 51.96359(7)# 115(23) ms (6+) 433.05 MeV
53Co 52.954219(19) 242(8) ms 7/2-# 449.50 MeV
54Co 53.9484596(8) 193.28(7) ms 0+ 463.16 MeV
55Co 54.9419990(8) 17.53(3) h 7/2- 477.76 MeV
56Co 55.9398393(23) 77.233(27) d 4+ 487.69 MeV
57Co 56.9362914(8) 271.74(6) d 7/2- 498.56 MeV
58Co 57.9357528(13) 70.86(6) d 2+ 507.56 MeV
59Co 58.9331950(7) STABLE 7/2- 517.49 MeV
60Co 59.9338171(7) 5.2713(8) a 5+ 525.56 MeV
61Co 60.9324758(10) 1.650(5) h 7/2- 534.57 MeV
62Co 61.934051(21) 1.50(4) min 2+ 540.78 MeV
63Co 62.933612(21) 26.9(4) s 7/2- 549.78 MeV
64Co 63.935810(21) 0.30(3) s 1+ 555.99 MeV
65Co 64.936478(14) 1.20(6) s (7/2)- 563.13 MeV
66Co 65.93976(27) 0.18(1) s (3+) 568.40 MeV
67Co 66.94089(34) 0.425(20) s (7/2-)# 575.54 MeV
68Co 67.94487(34) 0.199(21) s (7-) 579.89 MeV
69Co 68.94632(36) 227(13) ms 7/2-# 586.10 MeV
70Co 69.9510(9) 119(6) ms (6-) 589.51 MeV
71Co 70.9529(9) 97(2) ms 7/2-# 596.65 MeV
72Co 71.95781(64)# 62(3) ms (6-,7-) 600.06 MeV
73Co 72.96024(75)# 41(4) ms 7/2-# 605.34 MeV
74Co 73.96538(86)# 50# ms [>300 ns] 0+ 608.76 MeV
75Co 74.96833(86)# 40# ms [>300 ns] 7/2-# 614.03 MeV
Les valeurs marquées # ne sont pas purement dérivées des données expérimentales, mais au moins en partie des tendances systématiques. Spins avec de faibles arguments d'affectation sont entre parenthèses. 14

Réactions

2 Al (s) + 3 CoCl2 (aq) → 2 AlCl3 (aq) + 3 Co (s) 
Al2O3 + 3 C + 3 Cl2 → 2 AlCl3 + 3 CO  15
Bi2O3 (s) + 3 C (s graphite) → 3 Bi (s) + 3 CO (g) 16
C (s graphite) + 1 H2O (g) → CO (g) + H2 (g) 17
2 C (s graphite) + 1 O2 (g) → 2 CO (g) 18
C3H8 (g propane) + 3 H2O (g) → 3 CO (g) + 7 H2 (g) 19
2 Ca3(PO4)2 (s beta) + 6 SiO2 (s quartz) + 10 C (s graphite) → P4 (g) + 6 CaSiO3 (ℓ) + 10 CO (g) 20
CaO (s) + 3 C (s) → CaC2 (s) + CO (g) 21
CH3OH (ℓ methanol) → 2 H2 (g) + CO (g) 22
CH3OH (ℓ methanol) + 1 CO (g) → CH3COOH (ℓ) 23
2 CH3SH + 1 CO → CH3COSCH3 + H2S  24
2 CH4 (g methane) + 1 O2 (g) → 2 CO (g) + 4 H2 (g) 25
CH4 (g methane) + 1 H2O (g) → CO (g) + 3 H2 (g) 25
2 CO (g) + 1 O2 (g) → 2 CO2 (g) 26
CO2 (g) + 1 C (s) → 2 CO (g) 27
Fe2O3 (s hematite) + 3 CO (g) → 2 Fe (s alpha) + 3 CO2 (g) 28
Fe2O3 (s hematite) + 3 C (s graphite) → 2 Fe (s alpha) + 3 CO (g) 29
FeO (s) + 1 CO (g) → Fe (s alpha) + CO2 (g) 30
FeO (s) + 1 C (s graphite) → Fe (s alpha) + CO (g) 30
H2O (g) + 1 CO (g) → H2 (g) + CO2 (g) 31
HCOOH (ℓ) → H2O (ℓ) + CO (g) 32
Na2SO4 (s) + 4 C (s graphite) → Na2S (s) + 4 CO (g) 33
SiO2 (s quartz) + 2 C (s graphite) → Si (ℓ) + 2 CO (g) 34
SiO2 (g) + 2 C (s graphite) + 2 Cl2 (g) → SiCl4 (g) + 2 CO (g) 35
2 TiO2 (s rutile) + 3 C (s graphite) + 4 Cl2 (g) → 2 TiCl4 (g) + CO2 (g) + 2 CO (g) 36
ZnO + 1 C → Zn + CO  37
ZnO (s) + 1 CO (g) → Zn (s) + CO2 (g) 38
2 Ca3(PO4)2 (s beta) + 6 SiO2 (s quartz) + 10 C (s graphite) → P4 (g) + 6 CaSiO3 (s wollastonite) + 10 CO (g) 39
13 C (s graphite) + 3 Cr2O3 (s) → 2 Cr3C2 (s) + 9 CO (g) 40

Abondance

Terre - composés Source: sulfides 41
Terre - Seawater: 0.00002 mg/L 42
Terre -  Croûte:  25 mg/kg = 0.0025% 42
Terre -  Manteau:  0.04% 43
Terre -  Coeur:  0.6% 43
Terre -  lithosphère:  0.003% 44
Terre -  Total:  840 ppm 45
Planète Mercure) -  Total:  1690 ppm 45
Vénus -  Total:  820 ppm 45
chondrites - Total: 1300 (relative to 106 atoms of Si) 46
Corps humain - Total: 0.000002% 47

composés

prix





Information de sécurité


Fiche signalétique - ACI Alloys, Inc.

Pour plus d'informations

Liens externes:

Sources

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:9.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 927.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(5) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(13) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(14) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(15) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 369.
(16) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 128.
(17) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 128, 214, 264.
(18) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 138, 204.
(19) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 264.
(20) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 186.
(21) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 139.
(22) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; p 164.
(23) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 120.
(24) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 168.
(25) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 226.
(26) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 184.
(27) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 378.
(28) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 116, 224.
(29) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 134.
(30) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 378.
(31) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 3.
(32) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 182, 225.
(33) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 167.
(34) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 379.
(35) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 384.
(36) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 136.
(37) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 385.
(38) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 138.
(39) - Atkins, Jones, and Laverman. Chemical Principles 6th ed.; W.H. Freeman and Company: New York, NY, 2013; p F94.
(40) - Atkins, Jones, and Laverman. Chemical Principles 6th ed.; W.H. Freeman and Company: New York, NY, 2013; p F95.
(41) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(42) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(43) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 962.
(44) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 964.
(45) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(46) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.
(47) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 7:17.